4.pdf
(
842 KB
)
Pobierz
doi:10.1016/j.flowmeasinst.2006.08.003
FlowMeasurementandInstrumentation17(2006)291–297
www.elsevier.com/locate/flowmeasinst
Effectofupstreamflowdisturbancesontheperformancecharacteristicsofa
V-coneflowmeter
S.N.Singh
,V.Seshadri,R.K.Singh,R.Gawhade
AppliedMechanicsDepartment,IITDelhi,HauzKhas,NewDelhi110016,India
Received9November2005
Abstract
TheperformancecharacteristicsofaV-coneflowmeterwithdifferentdiameterratioshavebeenevaluatedexperimentallyasafunctionof
Reynoldsnumberandupstreamdisturbance.TheexperimentshavebeenconductedusingwaterandoiltocoverawiderangeofReynolds
numbers.TheeffectofupstreamvelocityprofilehasbeeninvestigatedbyplacingagatevalveupstreamoftheV-coneflowmeteratadistanceof
5D,10Dand15Dandperformingtheexperimentsat25%,50%,75%andfullyopenconditionsofthevalve.Fromthestudy,itisseenthatthe
dischargecoefficientofaV-coneflowmeterisnearlyindependentofReynoldsnumber.Thevalueofthedischargecoefficientis0.7256±1.78%
for=0.64,andfor=0.77thedischargecoefficientis0.7315±1.97%.Thevalueofthedischargecoefficientisnotaffectedbytheupstream
disturbanceifthedisturbanceisplacedatadistanceof10Dormore.Thevariationinvalueofthedischargecoefficientisapproximately6%for
adisturbanceplacedatadistanceof5D.
c
2006ElsevierLtd.Allrightsreserved.
Keywords:V-coneflowmeter;Dischargecoefficient;Reynoldsnumber;Flowdisturbance;Equivalentdiameterratio
1.Introduction
variablearea,annularflowetchavebeendevelopedoverthe
yearsforspecialapplicationsandarecurrentlyavailableinthe
openmarket[
2–4
].Towardtheendofthelastcentury,afew
moredifferentialpressuretypeflowmeters,namelythewedge
flowmeter,variableareaorificemeterandV-coneflowmeter
weredevelopedtoimprovetheturndownratioandalsotomake
thedischargecoefficientlesssensitivetoReynoldsnumber.The
otherefforthasbeentominimizetherequirementofupstream
anddownstreamlengthscombinedwithimprovedaccuracy.In
someoftheindustrialapplications,upstreamflowishighly
disturbedcausinginaccuracyinthemeasurement.Underthese
conditions,Shenmin[
5
]hasopinedthattheV-coneflowmeter
provedtobeaviablealternative.
TheliteratureavailableonthedesignofV-coneflowmeter
isscanty,probablyduetoconfidentialityandpatentrequire-
ments[
6
].ItisclaimedthattheV-coneflowmeterprovides
flowmeasurementwithanaccuracyofupto±0.05%overa
turndownratioof30:1.Inaddition,therepeatabilityofthe
V-coneflowmeterisclaimedtobe±0.1%comparedwith
±0.2%fortheotherflowmeasurementdevicesanditdoesnot
requirefrequentrecalibration.Besidestheseadvantages,the
V-coneflowmeterisalsomoreresistanttoabrasionandwear
Theaccuratemeasurementoffluidflowisvitalforcustody
transferandprocesscontrolinmanyindustries.Insome
operations,theabilitytoconductaccurateflowmeasurementis
soimportantthatitcanmakethedifferencebetweenmaking
aprofitandincurringaloss.Forsuchapplications,special
flowmetersliketheturbineflowmeter,vortexflowmeteror
Coriolisflowmeterareusedasthesecanhaveahighaccuracy
oftheorderof±0.1%ifusedunderidealconditions.Formost
normalindustrialapplications,differentialpressuredevices
suchasanorificemeter,aventurimeter,anozzlemeterortheir
variantsareused.Thelimitationofthesemetersisthattheturn
downratioofthesemetersisoftheorderof5andminimum
upstreamanddownstreamstraightlengthsneedtobeprovided
toensureproperflowconditions.Orificemetersarewidely
usedduetotheirlowcost,simpledesign,lowmaintenance
requirementsandhighreliability[
1
].Specialtypesoforifice
meterssuchareeccentric,quadrantedge,conicalentrance,
Correspondingauthor.Tel.:+91116591180;fax:+91116581119.
E-mailaddress:
sidhnathsingh@hotmail.com
(S.N.Singh).
0955-5986/$-seefrontmatterc2006ElsevierLtd.Allrightsreserved.
doi:10.1016/j.flowmeasinst.2006.08.003
292 S.N.Singhetal./FlowMeasurementandInstrumentation17(2006)291–297
51to0.90atRe=22,000usingwaterasthe
workingfluidwithupstreamdisturbance.Theyhaveshownthat
theV-coneflowmeterislesssensitivetothepresenceofswirl.
Irving[
14
]hasanalyzedthetypeofdisturbancecausedbya
rangeofpipefittingsanddiscussedthewayinwhichvarious
typeofdisturbancesaffecttheflowthroughorificemeters.
Heconcludedthatstandardsareinadequateinspecifyingthe
sufficientlengthofstraightpipe.Joshi[
15
]hasreportedthe
specialfeaturesoftheconeflowmeteranditsadvantages.From
hisstudies,hehasconcludedthatunderallconditions,the
V-coneflowmeter’sperformanceisbetterthanthatoftheother
typesofflowmeteroverawiderangeofReynoldsnumbers.In
thepresentstudy,theperformanceofaV-coneflowmeterhas
beenexperimentallyevaluatedasfunctionofReynoldsnumber
andthentheeffectofupstreamdisturbancehasbeenanalyzed.
Theupstreamdisturbancehasbeencreatedbyplacingagate
valveatdifferentupstreamdistances.
=0
.
Symbols
Equivalentconediameterratio
Re Reynoldsnumber
m
3
p Staticpressure,Pa
C
d
Dischargecoefficient
1h Differentialhead,mmWC
Hg Mercury
o SAE-20oil
W Water
Q Dischargerate,kg
Density,kg
/
/
s
u Meanvelocity,m
/
s
µ
Dynamicviscosityofthefluid,Pas
Kinematicviscosityoffluid,m
2
/
2.V-coneflowmeter
becauseofitsgeometry.Thetaperdesignminimizeswear(ero-
sion)byreducingthecontactoftheprimaryelementwithhigh
velocity[
7
].AV-conemetercanalsomeasureevenindis-
turbedflowconditionswithshorterupstreamstraightpipesas
comparedtootherflowmeasuringdevices.Thishasresulted
intheincreasinguseofV-coneflowmetersintheoffshore
andpetroleumrefiningindustries[
8
].Thebasicdesignofthe
V-coneflowmetermakesitrelativelyinsensitivetooutside
vibrationsaswellasconegeometryandpressuretaplocations.
AtlowReynoldsnumbers,thevelocityprofileisnolonger
flat(asinhighlyturbulentregimes)andtakestheshapeofa
parabola,withmaximumvelocityatthecenterofthepipe.
Liptak[
9
]hasreportedthattheannularregionbetweenthepipe
andtheconeelementtendstoflattenthevelocityprofileby
slowingtheflowatthecenterwhileincreasingitnearthewall
resultinginamoreuniformvelocityprofile.Genesietal.[
10
]
haveshownthattheV-conecreatesacontrolledturbulence
regionthatreshapesthevelocityprofileinthepipelinewhich
isdesirableforflowmeasurements.Flowisalsodirectedaway
fromconeedgeduetoboundarylayerformationonthecone
surface,thereforetheedgeisnotlikelytowear.
BritishandISOstandardcodesrecommendtheminimum
straightlengthsupstreamanddownstreamoftheflowmeter
dependingontheReynoldsnumber,pipediameter,
TheV-cone’simprovedperformancecharacteristicsarea
resultofitsuniquedesign(
Fig.1
).Itfeaturesacentrally
locatedconeinsideatube.Theconeinteractswiththefluid
flow,reshapestheincomingfluid’svelocityprofileandfinally
createsaregionoflowerpressureimmediatelydownstream
ofthecone.Thepressuredifferenceexhibitedbetweenthe
staticpressureatadistanceofonediameterupstreamof
theconeandthelowpressurecreateddownstreamofthe
cone,canbemeasuredandcorrelatedtotheflowrate.The
pressuredifferentialmeasuredisincorporatedintothestandard
flowmeterequationfordifferentialpressuredevicestoevaluate
theflowrateprovidedthedischargecoefficientisknown:
Q=C
d
×
1
p
1−
4
×
4
×(
D
2
−d
2
)×
p
2××1
P(1)
s
D
2
−d
2
D
2
where
=
(2)
and
1
P=(
Hg
−
w
)×g×
1
h
1000
.
(3)
ratio
andpipefitting.Ifftetal.[
11
]haveconductedexperimentsto
examinetheeffectofflowdisturbanceonaconicalflowmeter.
Theflowdisturbancewascreatedbyinstallingsingleand
doubleelbowsindifferentplanes.Fromtheresults,itcan
beconcludedthattheperformanceofaV-coneflowmeter
isnotverymuchaffectedbythisdisturbanceevenifthe
upstreampipelengthissmallornegligible.Prabhuetal.[
12
]
haveconductedexperimentsfor
Allothertermshavetheirusualmeaningsandarementioned
inthenomenclatureand
Fig.1
.
Forthepresentstudy,thepipediameterchosenis52mm
(50mmNB)andthehighestdiameteroftheconeis40mm
for
=0
64and33mmfor
=0
.
75.Thelengthofthe
75and
itwasheldinthepositionbythreethinradialstrutsprovided
onthecylindricalportionupstreamofthevertexofthecone
asshownin
Fig.1
.Thestrutsweregivenanaerofoilshapeto
minimizeflowdisturbance.Pressuretapsareprovidedatone
pipediameterupstreamandatthebaseoftheconeasshownin
Fig.1
.
=0
.
64and32mmfor
=0
.
75intheReynolds
numberrangeof30,000to49,400withairastheworking
fluidwithsingleanddoublebends.Theyhaveconcludedthat
thedischargecoefficientinthecaseofaV-coneflowmeter
islesssensitivecomparedtotheotherflowmeteringdevices
andpumpinglossesarealso50%lessincomparisonwiththe
orificemeter.Sarkaretal.[
13
]haveconductedexperiments
=0
.
3.Experimentalsetupforwaterandoil
Inordertoanalyzetheeffectofupstreamvalvedisturbance
ontheV-coneflowmeter,twoexperimentaltestsetupsfor
with
D Pipediameter,m
d Conediameter,m
s
.
conewas38mmfor
S.N.Singhetal./FlowMeasurementandInstrumentation17(2006)291–297 293
Fig.1.DesignanddrawingdetailsofaV-coneflowmeter.
Fig.2.Sketchoftheexperimentalsetupforflowmeasurements.
waterandoilexperimentswerefabricated.Theschematic
arrangementoftheexperimentalsetupforwaterisshownin
Fig.2
and
Fig.3
showstheplacementoftheconeinsidethe
pipe.Waterissuppliedtothesetupfromalargesizedover-
headtanklocatedatanelevationof15mabovetheground.The
waterlevelinthetankwasmaintainedconstantbyoperating
suitablepumpslocatedinthebasementofthelaboratorywith
theprovisionofanoverflowpipe.Flowratewasregulatedbya
gatevalve‘V
3
’locatedat22Ddownstreamoftheflowmeter.
Duringexperimentation,valve‘V
1
’waskeptfullyopenand
valve‘V
3
’wasusedtoregulatetheflowrate.Theflowrate
wasmeasuredusingthegravimetricmethod.Forthispurpose,
abeamtypebalanceof1000kgcapacitywithaweighingtank
wasused.Theresolutionofthebalancewas0.10kg.Inthis
methodthetimeforaknownweightofwatertogetcollected
inthetankwasaccuratelymeasuredusinganelectronicstop
watchhavingaresolutionof0.01s.Thepressuredifferentialis
measuredusingeithermercuryU-tubemanometersorinverted
U-tubemanometers(resolution±1mm)dependingonthe
magnitude.
Anothergatevalve‘V
2
’wasincorporatedupstreamofthe
V-coneatdifferentdistancesandoperatedat25%,50%,75%
andfullyopenconditionstostudytheeffectofaskewed
velocityprofileontheperformanceoftheV-coneflowmeter.
Theexperimentalsetupforoilwasexactlysameasthatfor
waterexceptthatoilfortheexperimentwasprovidedfromthe
294 S.N.Singhetal./FlowMeasurementandInstrumentation17(2006)291–297
Table1
Physicalpropertiesoftheworkingfluids
Workingfluid Temperature(
C) Density
(
kg
/
m
3
)
Viscosity(Pas)
Water 18 998.97 0.0013
SAE–20(Oil) 32 799.82 0.018
storagetankusingagearpumpcoupledtoamotorof5hp
runningat980rpm.Theweighingmachineusedwasof100kg
capacity.Theweighingmachinewaskeptabovethestorage
tanksothatitcouldemptyintoitafterthemeasurement.Thus
thesetwasaclosedlooprecirculatingtype.Thissetupwasused
toconductexperimentsatlowReynoldsnumber.Thephysical
propertiesofoilandwaterusedinthestudyaregivenin
Table1
.
4.Rangeofparametersinvestigated
Fig.3.PhotographoftheV-coneinsidethepipe.
TheV-coneflowmeterwasfirstcalibratedunderideal
conditionstoevaluatethedischargecoefficient.Thenavalve
‘V
2
’wasplacedatadistanceof5D,10Dand15Dupstream
oftheV-conetoproduceskewedvelocityprofileupstream
oftheconebyadjustingtheopeningofthisvalveatfour
locationsnamely25%,50%,75%andfullyopenconditions.
Foreachopeningofthevalve‘V
2
’andlocations,thevalueof
thedischargecoefficienthasbeenobtainedfortherangeofflow
ratesforboth
5.Resultsanddiscussion
TheV-coneflowmeteriscalibratedunderidealconditions
usingbothfluids,namelywaterandSAE20oil,forboth
.
54×10
5
.
Fig.4
showsthevariationofthevalueofC
d
withReynoldsnumber
forboththe
.
25×10
3
–2
.
ratios.ItisseenthatthevalueoftheC
d
atlowReynoldsnumbersissomewhathigherandreduces
withincreaseinReynoldsnumber.Theaveragevalueofthe
dischargecoefficientis0.7256for
ratios.
Table2
givesthefullrangeofparameters
investigated.
Statisticalanalysiswasconductedforeachoftheflow
conditionsbycomparingthevalueofC
d
underidealconditions
tothatofdisturbedconditions.Uncertaintyinthevalueof
C
d
wasalsoestablishedonthelinesofANSI.Theformulae
usedtoevaluatethestandarddeviationanduncertaintiesofthe
experimentsare
64withapercentage
uncertaintyof1.78%,andthecorrespondingvaluefor
=0
.
77
is0.7310withapercentageuncertaintyof1.97%(
Table3(a)
)
intherangetested.ThereforeitcanbeconcludedthatC
d
is
nearlyindependentofReynoldsnumberintherangetested.
Havingestablishedtheindependenceofdischargecoefficient
withReynoldsnumber,furtherexperimentswereonlycarried
outwithwater.
Figs.5
and
6
showthevariationofC
d
with
Reynoldsnumberandtheeffectofvalveopeningforboth
valuesof
=0
.
n
P
C
d
n
.
MeanvalueofC
d
=
¯
C
d
=
i=1
(4)
.
Fig.5
(a)givesthevaluesofdischargecoefficient
64)forthevalvelocationat5Danditisseenthat
C
d
isnearlyconstantforagivenopeningofthevalve.It
isalsoseenthatC
d
valuesincreasewithincreasingclosure
ofthevalve.ThisvariationofC
d
canbeattributedtothe
acceleratingflowandphenomenonofreshapingofthevelocity
profileintheannulusspaceasitapproachestheconeflowmeter
base.C
d
valuesat25%valveopeningwerefoundtobethe
highest,withanaveragevalueof0.7540.Theaveragevalues
forotheropeningswere0.7482for50%opening,0.7396for
75%openingand0.7142forfullyopenconditions.Thevalue
=0
.
v
u
u
u
t
n
P
i=1
(
C
d
−
¯
C
d
)
2
n
.
StandarddeviationinC
d
=
C
d
=
(5)
r
n
n−1
C
d
(6)
wherenisthenumberofmeasurementsineachrun.Theresults
oftheuncertaintyanalysisaregivenin
Table3
.
StandarderrorinC
d
=U
C
d
=
Table2
Rangeoftheparametricinvestigation
S.no.
ratio Upstreampositionofvalve‘V
2
’ Extentofopeningofvalve‘V
2
’ RangeofReynoldsnumber Parametermeasured
5D 25%,50%,75%andfullyopen 4.06×10
4
–2.19×10
5
Differentialheadacrossthe
conefordifferentflowrateand
C
d
calculatedforeach
combinationofvalveopening
andupstreamdistance
1 0.64
10D 25%,50%,75%andfullopen 6.12×10
4
–2.19×10
5
15D 25%,50%,75%andfullyopen 6.84×10
4
–2.21×10
5
2 0.77
5D 25%,50%,75%andfullyopen 5.49×10
4
–2.72×10
5
10D 25%,50%,75%andfullyopen 5.30×10
4
–2.72×10
5
15D 25%,50%,75%andfullyopen 1.43×10
4
–2.62×10
5
TherangeofRecoveredis1
(
S.N.Singhetal./FlowMeasurementandInstrumentation17(2006)291–297 295
Table3(a)
MeasuredvaluesofC
d
withoutvalve
S.no. Workingfluid Case Meanvalue Standarddeviation Percentageuncertainty RangeofReynolds
number
1 Oil
=0.64 0.7395 0.0023 0.36 1.25×10
3
–1.65×10
4
2 Oil
=0
77 0.7482 0.0030 0.43 1
.
50×10
3
–1
00×10
4
3 Water
=0.64 0.7145 0.0021 0.31 4.06×10
4
–2.18×10
5
54×10
5
5 Oilandwater =0.64 0.7256 0.0126 1.78 1.25×10
3
–2.18×10
5
6 Oilandwater
=0
77 0.7203 0.0024 0.36 9
.
10×10
4
–2
.
=0
77 0.7315 0.0139 1.97 1
.
50×10
3
–2
54×10
5
Table3(b)
MeasuredvaluesofC
d
andtheiruncertaintyforwaterflow
S.no. Case Valveopening Meanvalue Standarddeviation Percentageuncertainty RangeofRe
1
=0.643
L=5D
Full 0.7145 0.0021 0.31 4.06×10
4
–2.18×10
5
75% 0.7396 0.0023 0.32 6.19×10
4
–2.15×10
5
50% 0.7482 0.0016 0.23 6.14×10
4
–2.04×10
5
25% 0.7540 0.0047 0.70 5.88×10
4
–1.57×10
5
2
=0.643
L=10D
Full 0.7157 0.0023 0.34 9.61×10
4
–2.18×10
5
75% 0.7136 0.0022 0.35 6.53×10
4
–2.07×10
5
50% 0.7147 0.0025 0.38 7.17×10
4
–1.97×10
5
25% 0.7157 0.0026 0.39 6.12×10
4
–1.57×10
5
3
=0.643
L=15D
Full 0.7123 0.0020 0.30 7.61×10
4
–2.21×10
5
75% 0.7170 0.0015 0.23 6.84×10
4
–2.18×10
5
50% 0.7167 0.0023 0.35 9.07×10
4
–2.00×10
5
25% 0.7152 0.0036 0.58 7.93×10
4
–1.36×10
5
4
77
L=5D
.
72×10
5
75% 0.7277 0.0040 0.58 5.49×10
4
–2.62×10
5
50% 0.7490 0.0035 0.50 6
.
10×10
4
–2
.
35×10
5
25% 0.7790 0.0014 0.20 6.41×10
4
–1.66×10
5
.
36×10
4
–2
.
5
=0.77
L=10D
Full 0.7207 0.0017 0.25 9.10×10
4
–2.72×10
5
75% 0.7195 0.0017 0.24 5.31×10
4
–2.60×10
5
50% 0.7199 0.0018 0.27 8.23×10
4
–2.37×10
5
25% 0.7197 0.0005 0.08 8.01×10
4
–1.43×10
5
6
=0.77
L=15D
Full 0.7205 0.0005 0.08 1.43×10
4
–2.63×10
4
75% 0.7210 0.0020 0.29 1.15×10
4
–2.62×10
4
50% 0.7195 0.0014 0.21 1.10×10
4
–2.33×10
4
25% 0.7210 0.0014 0.24 1.03×10
4
–1.74×10
4
(a)=0.64.
(b)=0.77.
Fig.4.VariationofC
d
withReforundisturbedflows.
.
.
4 Water
.
.
.
=0
Full 0.7207 0.0026 0.38 9
Plik z chomika:
Maagdaa
Inne pliki z tego folderu:
12.doc
(2610 KB)
12.pdf
(1209 KB)
13.doc
(3009 KB)
13.pdf
(962 KB)
14.doc
(1387 KB)
Inne foldery tego chomika:
Wykresy z artykułów
Zgłoś jeśli
naruszono regulamin