8!.DOC

(123 KB) Pobierz
steiner

 

             

 

    POLITECHNIKA  WROCŁAWSKA

                    INSTYTUT  FIZYKI

 

   

       Sprawozdanie  z  ćwiczenia  nr  8

        

                                  TOMASZ  ZALEWA

                       DARIUSZ  DULINIEC

 

    TEMAT: Wyznaczanie momentu

                    bezwładności i sprawdzanie

                    twierdzenia Steinera.  

 

         Wydział: PPT                                  Rok: 2

 

  

          DATA: 21.12.1994            OCENA:

           

 

 

 

 

 

 

 

 

Cel  ćwiczenia:

  - Stwierdzenie zależności okresu drgań wahadła od momentu bezwładności.

  - Doświadczalne potwierdzenie twierdzenia Steinera.

  - Wyznaczenie momentu bezwładności ciał względem osi przechodzącej przez

     środek masy (tzw. osi środkowej).

 

            

Część  teoretyczna.

 

Ruchem drgającym nazywamy każdy ruch lub zmianę stanu, które charakteryzuje powtarzalność w czasie wartości wielkości fizycznych, określających ten ruch lub stan. Jeżeli wartości wielkości fizycznych zmieniające się podczas drgań powtarzają się w równych odstępach czasu to ruch taki nazywamy ruchem okresowym.

Najprostszy rodzaj drgań okresowych są drgania harmoniczne.

Okresem drgań harmonicznych nazywamy najmniejszy odstęp czasu, po upływie którego powtarzają się wartości wszystkich wielkości fizycznych charakteryzujących drganie.

Jako przykład drgań harmonicznych można podać niewielkie wahania wahadła fizycznego.

Wahadło fizyczne jest to ciało doskonale sztywne, które pod wpływem własnego ciężaru waha się dookoła osi nie przechodzącej przez środek ciężkości ciała.

Okres drgań harmonicznych [T] wahadła fizycznego można wyznaczyć korzystając ze związku:           

                               

i stąd:

                                .

 

Okres drgań harmonicznych nie zależy od kąta wychylenia    z położenia równowagi (izochronizm wahań).

 

 

Twierdzenie Steinera.

 

Po przekształceniu wzoru na okres drgań (w/w) otrzymujemy następujące wyrażenie na moment bezwładności:

                                          .

Moment ten jest mierzony względem osi obrotu wahadła.

W praktyce często przydatna jest znajomość momentów bezwładności mierzonych względem osi przechodzącej przez środki ciężkości tych ciał.

Do wyznaczenia momentu bezwładności ciała względem osi przechodzącej przez środek masy ciała korzysta się z twierdzenia Steinera, które brzmi następująco: różnica momentów bezwładności ciała względem dwu równoległych osi, z których jedna przechodzi przez środek masy, równa jest iloczynowi masy ciała m i kwadratu odległości d między osiami:

 

                                      .

 

Dla dwu różnych odległości od osi przechodzącej przez środek masy ciała mamy:

 

              .

 

Po podstawieniu poprzedniego wzoru otrzymujemy:

 

              .

 

Otrzymana doświadczalnie stała wartość powyższych wyrażeń może służyć jako potwierdzenie twierdzenia Steinera.

Stała C pozwala obliczyć moment bezwładności ciała względem osi przechodzącej przez środek masy:

                       .

 

 

Urządzenie pomiarowe.

 

Częścią zasadniczą jest tarcza metalowa z symetrycznie naciętymi otworami. Umieszczenie podpory w postaci metalowej pryzmy w różnych otworach pozwala zmieniać odległości osi obrotu od środka masy tarczy. W drugiej części ćwiczenia rolę wahadła spełnia pierścień metalowy, dla którego daje się zrealizować tylko jedno położenie osi obrotu względem środka masy.

Odległość 2d mierzymy za pomocą suwmiarki.

Okres drgań wyznaczamy za pomocą stopera.

Masę ciała wyznaczamy za pomocą wagi laboratoryjnej.

                           

    

 

 

 

 

Część  doświadczalno - obliczeniowa.

 

 

1. TARCZA.

 

1. 2d = 149,5mm 0,1mm

       d = 74,75mm = 0,07475m 0,0001m

 

POMIAR

100T [s]

100T

C []

C []

1

68,9

0,0

 

 

2

68,8

0,1

 

 

3

69,0

0,1

 

 

średnia

68,9

0.1

0,1275

0,00190

 

T = 0,689s 0,001s      

      

 

 

2.  2d = 129,5mm 0,1mm

       d = 64,75mm = 0,06475m 0,0001m

 

POMIAR

100T [s]

100T [s]

C []

C []

1

69,8

0,4

 

 

2

69,4

0,0

 

 

3

69,0

0,4

 

 

średnia

69,4

0,4

0,1404

0,000842

 

 

 

3.  2d = 139,2mm 0,1mm

       d = 69,6mm = 0,0696m 0,0001m

 

POMIAR

100T [s]

T [s]

C []

C []

1

...

Zgłoś jeśli naruszono regulamin