Anomalous%20Hydrogen%20Generation%20by%20Plasma%20Electrolysis%20P3.pdf

(387 KB) Pobierz
Mizuno, T., T. Akimoto, and T. Ohmori. Confirmation of anomalous hydrogen generation by plasma
electrolysis. in 4th Meeting of Japan CF Research Society. 2003. Iwate, Japan: Iwate University.
Confirmation of anomalous hydrogen generation by plasma electrolysis
Tadahiko Mizuno, Tadashi Akimoto and Tadayoshi Ohmori
Hokkaido University, Kita-ku Kita-13 Nishi-8, Sapporo 060-8628, Japan
E-mail: mizuno@qe.eng.hokudai.ac.jp
Abstract: Direct decomposition of water is very difficult in normal conditions. Hydrogen gas
is usually obtained by the electrolysis. Pyrolysis decomposition of water occurs at high
temperatures, starting at ~3000ºC. As we have already reported, anomalous hydrogen is
sometimes generated during plasma electrolysis. Excess hydrogen usually appears once
certain difficult conditions during high temperature glow discharge electrolysis are met. Here,
we show that anomalous amounts of hydrogen and oxygen gas are generated during plasma
electrolysis excess gas generation, presumably from pyrolysis. This is indirect proof that
exceptionally high temperatures have been achieved. (Direct measurement of the reaction
temperature has proved difficult.) Continuous generation of hydrogen above levels predicted
by Faraday’s law is observed when temperature, current density, input voltage and electrode
surface meet certain conditions. Although only a few observations of excess hydrogen gas
production have been made, production is sometimes 80 times higher than normal Faradic
electrolysis gas production.
Key word: plasma electrolysis, hydrogen generation, current efficiency
1. Introduction
We previously reported anomalous hydrogen generation during plasma electrolysis (1,2) . Some
researchers have attempted to replicate the phenomenon, but it is difficult to generate large
excess hydrogen. Usually, the plasma state can be achieved fairly easily when voltage is
increased to at least 140V at a high electrolyte temperature. Several researcher have tried to
replicate tend to raise input voltage very high, to several hundred volts. But they have
observed no excess hydrogen even at such high voltage, because they have not achieved the
other conditions we specify.
During plasma electrolysis, so much vapor and the hydrogen gas are released from the cell
that it becomes difficult to determine the heat balance. Measuring the enthalpy of the effluent
gas is particularly difficult and complicated, and it has not been done heretofore.
It is even more challenging to measure enthalpy removed from the system in excess gas, but
it is important to measure the power balance, to be sure one have replicated excess hydrogen,
because without it one cannot expect excess hydrogen.
The amount of hydrogen and the oxygen generated by electrolysis is based on Faraday's law.
The volumes of these gases are 0.116 cc/C for hydrogen and 0.0581 cc/C for oxygen at
standard conditions (3,4) . The yield might exceed Faraday’s law at very high temperatures,
exceeding 3000 , when direct pyrolysis can occur. However, the estimated temperature of
ordinary glow discharge plasma at 100V is lower than this. Glow discharge occurs when
electrolysis is performed at high input voltage (100V or more) in an aqueous solution (5,6,7,8) .
A plasma forms, and a mixture of free hydrogen, oxygen and steam are formed on the surface
of the cathode electrode. The generation of hydrogen at levels exceeding Faraday’s law is
observed when the conditions such as temperature, current density, input voltage and
electrode surface are suitable (9,10,11,12) . The precise conditions are still not known, and
controlling these conditions is difficult, so only a few observations of excess hydrogen have
been made (13,14,15) .
2. Experiment
2.1 Electrolysis cell
Figure 1 shows the schematic outline of the cell and measurement system (1,2) . The cell, made
of Pyrex glass, is 10 cm diameter and 17 cm in height, and 1000 cc in capacity. The cap is
Teflon rubber, 7 cm diameter. The cap has several holes, three for platinum RTDs (Resistance
Temperature Detectors) to measure electrolyte temperature, two for a coolant water tube inlet
and outlet (described below), one to vent the oxygen from the anode, and a dome to capture
hydrogen gas from the cathode (described below).
2.2 Capture and measurement of hydrogen gas
The electrodes are isolated in separate partitions within the cell, to prevent oxygen from
mixing with hydrogen. A dome or funnel-like quartz glass dome surrounds the cathode,
extending below it. It is 5 cm in diameter, 12 cm in length. The effluent gas from the cathode
— a mixture of hydrogen from electrolysis, hydrogen and oxygen from pyrolysis, and water
vapor from the intense heat — is captured inside the funnel as it rises up to the surface of the
electrolyte. Oxygen from electrolysis is generated at the anode, outside the funnel. The anode
is a platinum mesh wrapped around the funnel. Bubbles of oxygen rise from the anode to the
surface and leave the cell through a separate vent hole.
Mass flowmeter
Q-mass
Pt resistance
thermometer
Hydrogen gas
Power analyzer
PZ4000  
Power supply
EX1500H
Netsushin
Teflon cap
Logger
HP - 34970A
C omputer
Gateway-solo
Quartz
pipe
Cathode
Pt anode
Cell
Flow meter
HEP-BACHItrol
10cm φ ,
16cm height
Mag.Stirrer
Water
supply
Incubator
Fig. 1: Detail of experimental set up.
Flow
meter
Vapor
condenser
C ooling water out
H2+O2+vapor mixing gas
Cooling water in
gas out
T
eflon rubber cap
Teflon rubber stopper
Shrinkable Teflon cover
Electrolyte
level
QMS
Cathode room
Anode
room
Cell
H2 Gas collector,
Quartz pipe
Anode,
Pt mesh
P lasma region
W cathode
Mixing gas bubble
Fig. 2: Details of gas measurement system.
780301815.346.png 780301815.357.png 780301815.368.png 780301815.379.png 780301815.001.png 780301815.012.png 780301815.023.png 780301815.034.png 780301815.045.png 780301815.056.png 780301815.067.png 780301815.078.png 780301815.089.png 780301815.100.png 780301815.111.png 780301815.122.png 780301815.133.png 780301815.144.png 780301815.155.png 780301815.166.png 780301815.177.png 780301815.188.png 780301815.199.png 780301815.210.png 780301815.221.png 780301815.232.png 780301815.243.png 780301815.254.png 780301815.265.png 780301815.276.png 780301815.287.png 780301815.298.png 780301815.309.png 780301815.320.png 780301815.326.png 780301815.327.png 780301815.328.png 780301815.329.png 780301815.330.png 780301815.331.png 780301815.332.png 780301815.333.png 780301815.334.png 780301815.335.png 780301815.336.png 780301815.337.png 780301815.338.png 780301815.339.png 780301815.340.png 780301815.341.png 780301815.342.png 780301815.343.png 780301815.344.png 780301815.345.png 780301815.347.png 780301815.348.png 780301815.349.png 780301815.350.png 780301815.351.png 780301815.352.png 780301815.353.png 780301815.354.png 780301815.355.png 780301815.356.png 780301815.358.png 780301815.359.png 780301815.360.png 780301815.361.png 780301815.362.png 780301815.363.png 780301815.364.png 780301815.365.png 780301815.366.png 780301815.367.png 780301815.369.png 780301815.370.png 780301815.371.png 780301815.372.png 780301815.373.png 780301815.374.png 780301815.375.png 780301815.376.png 780301815.377.png 780301815.378.png 780301815.380.png 780301815.381.png 780301815.382.png 780301815.383.png 780301815.384.png 780301815.385.png 780301815.386.png 780301815.387.png 780301815.388.png 780301815.389.png 780301815.002.png 780301815.003.png 780301815.004.png 780301815.005.png 780301815.006.png 780301815.007.png 780301815.008.png 780301815.009.png 780301815.010.png 780301815.011.png 780301815.013.png 780301815.014.png 780301815.015.png 780301815.016.png 780301815.017.png 780301815.018.png 780301815.019.png 780301815.020.png 780301815.021.png 780301815.022.png 780301815.024.png 780301815.025.png 780301815.026.png 780301815.027.png 780301815.028.png 780301815.029.png
After the gas rises to the top of the funnel, it passes through a Teflon sleeve into a condenser.
The water vapor condenses and falls back into the cell, and the hydrogen and oxygen
continues through an 8-mm diameter Tigon tube and a gas flow meter (Kofloc Corp., model
3100, controller model CR-700). This is a thermal flow meter; the flow detection element is a
heated tube. The minimum detectable flow rate is 0.001 cc/s, and the resolution is within 1%.
The gas flow measurement system is interfaced to a data logger, which is attached to the
computer.
After passing through the flow meter, part of the gas stream is diverted into a quadra pole
mass spectrometer. A small, constant volume of the gas, typically 0.001 cc/s, passes through a
needle valve and is analyzed by a mass spectrometer.
2.3 Power efficiency measurement
Two methods of power efficiency are performed simultaneously: flow and isoperibolic. Flow
calorimetry is performed by circulating cooling water through a complicated circuit. The
cooling water is tap water that begins by passing through a coiled copper tube immersed in a
constant temperature bath. The cooling water then passes through a turbine flow meter
(HEP-BATCHItrol II), and past the inlet temperature sensor RTD. From there, water goes
through the outer chamber of the condenser above the cell. (Effluent gas from the cathode
passes through the inner chamber. The water condenses and falls back into the cell, and the
hydrogen gas continues on.) The cooling water tube then enters the cell to remove heat from
the electrolyte solution. It is wound in a coil around the anode mesh and the funnel. The tube
exits the cell, passes through the outlet temperature sensor RTD, and from there, it goes to the
drain. Heat from both the condenser and the electrolyte is measured by comparing the inlet
and outlet temperatures.
Isoperibolic calorimetry is performed by monitoring the temperature of the electrolyte
solution with three RTDs, which are widely separated and placed at different levels in the
solution. The solution is mixed with a magnetic stirrer.
The amount of the heat generation is estimated by combining the flow and isoperibolic data
compared with the input electric power. The heat balance is still being investigated, and it
will be described in a future paper.
2.4 Electrode and solution
The electrode was tungsten wire, 1.5 mm in diameter and 15 cm in length, the upper 13 cm of
the wire covered with shrinkable Teflon, and the bottom 2 cm acted as the electrode. The light
water solution was made from high purity K 2 CO 3 reagent at 0.2M concentration.
2.5 Power supply
The power supply was a Takasago model EH1500H. Input power was calibrated for each five
seconds and measured with a Yokogawa PZ4000 meter. The sampling time was 40 μ s, during
which 100 kb of data is collected.
2.6 Data collection
All data, including the flow rate of the cooling water, the temperature of the coolant at the
inlet and outlet, the temperature at three locations in the cell and one location in the
thermostatic chamber, the input voltage, current, and the amount of the hydrogen gas
generation were recorded by a data logger (Agilent Corp., 34970A), and a computer for each
5s.
3. Results
A calibration is shown in Figure 3. The temperature, input voltage and current were shown in
Figure 3A; the input voltage was 100 and 80V, the current was increased from 2.5 to 3.5A
and the temperature stayed 80 . Figure 3B shows the change in the amount of the
hydrogen gas measured directly from hydrogen gas flow meter and the expected hydrogen
flow from the electric current, based on Faraday’s law. Over the entire 1000-seconds run, the
value obtained from flow meter and the Q-mass system, i.e. the current efficiency, was same
with expected amount calculated according to Faraday’s law for the measured current.
200
4
1
Cur r ent
0. 8
150
3
Vol t age
0. 6
100
2
H2;Current
H2 ; F l o w
Temper at ur e
0. 4
50
1
0. 2
0
0
0
200
400
600
800
1000
0
200
400
600
800
1000
Ti me/s
Time/s
cf dat a\W20912#1
cf dat a\W20912#1
Fig. 3A: Changes of input voltage, current
and cell temperature for the calibration
measurement.
Fig. 3B: Two rates of hydrogen generation
measured by flow meter and estimation
from current during normal electrolysis in
Figure 3A.
3
1. 5
2
1
He a t : Ou t / I n
ε :Hf/Hc
1
0. 5
0
0
0
200
400
600
800
1000
Ti me/s
cf dat a\W20912#1
Fig. 3C: Current and power efficiencies under Figure 3A conditions.
780301815.030.png 780301815.031.png 780301815.032.png 780301815.033.png 780301815.035.png 780301815.036.png 780301815.037.png 780301815.038.png 780301815.039.png 780301815.040.png 780301815.041.png 780301815.042.png 780301815.043.png 780301815.044.png 780301815.046.png 780301815.047.png 780301815.048.png 780301815.049.png 780301815.050.png 780301815.051.png 780301815.052.png 780301815.053.png 780301815.054.png 780301815.055.png 780301815.057.png 780301815.058.png 780301815.059.png 780301815.060.png 780301815.061.png 780301815.062.png 780301815.063.png 780301815.064.png 780301815.065.png 780301815.066.png 780301815.068.png 780301815.069.png 780301815.070.png 780301815.071.png 780301815.072.png 780301815.073.png 780301815.074.png 780301815.075.png 780301815.076.png 780301815.077.png 780301815.079.png 780301815.080.png 780301815.081.png 780301815.082.png 780301815.083.png 780301815.084.png 780301815.085.png 780301815.086.png 780301815.087.png 780301815.088.png 780301815.090.png 780301815.091.png 780301815.092.png 780301815.093.png 780301815.094.png 780301815.095.png 780301815.096.png 780301815.097.png 780301815.098.png 780301815.099.png 780301815.101.png 780301815.102.png 780301815.103.png 780301815.104.png 780301815.105.png 780301815.106.png 780301815.107.png 780301815.108.png 780301815.109.png 780301815.110.png 780301815.112.png 780301815.113.png 780301815.114.png 780301815.115.png 780301815.116.png 780301815.117.png 780301815.118.png 780301815.119.png 780301815.120.png 780301815.121.png 780301815.123.png 780301815.124.png 780301815.125.png 780301815.126.png 780301815.127.png 780301815.128.png 780301815.129.png 780301815.130.png 780301815.131.png 780301815.132.png 780301815.134.png 780301815.135.png 780301815.136.png 780301815.137.png 780301815.138.png 780301815.139.png 780301815.140.png 780301815.141.png 780301815.142.png 780301815.143.png 780301815.145.png 780301815.146.png 780301815.147.png 780301815.148.png 780301815.149.png 780301815.150.png 780301815.151.png 780301815.152.png 780301815.153.png 780301815.154.png 780301815.156.png 780301815.157.png 780301815.158.png 780301815.159.png 780301815.160.png 780301815.161.png 780301815.162.png 780301815.163.png 780301815.164.png 780301815.165.png 780301815.167.png 780301815.168.png 780301815.169.png 780301815.170.png 780301815.171.png 780301815.172.png 780301815.173.png 780301815.174.png 780301815.175.png 780301815.176.png 780301815.178.png 780301815.179.png 780301815.180.png 780301815.181.png 780301815.182.png 780301815.183.png 780301815.184.png 780301815.185.png 780301815.186.png 780301815.187.png 780301815.189.png 780301815.190.png 780301815.191.png 780301815.192.png 780301815.193.png 780301815.194.png 780301815.195.png 780301815.196.png 780301815.197.png 780301815.198.png 780301815.200.png 780301815.201.png 780301815.202.png 780301815.203.png 780301815.204.png 780301815.205.png 780301815.206.png 780301815.207.png 780301815.208.png 780301815.209.png 780301815.211.png 780301815.212.png 780301815.213.png 780301815.214.png 780301815.215.png 780301815.216.png 780301815.217.png 780301815.218.png 780301815.219.png 780301815.220.png 780301815.222.png 780301815.223.png 780301815.224.png 780301815.225.png 780301815.226.png 780301815.227.png 780301815.228.png 780301815.229.png 780301815.230.png 780301815.231.png 780301815.233.png 780301815.234.png 780301815.235.png 780301815.236.png 780301815.237.png 780301815.238.png 780301815.239.png 780301815.240.png 780301815.241.png 780301815.242.png 780301815.244.png 780301815.245.png 780301815.246.png 780301815.247.png 780301815.248.png 780301815.249.png 780301815.250.png 780301815.251.png 780301815.252.png 780301815.253.png 780301815.255.png 780301815.256.png 780301815.257.png 780301815.258.png 780301815.259.png 780301815.260.png 780301815.261.png 780301815.262.png 780301815.263.png 780301815.264.png 780301815.266.png 780301815.267.png 780301815.268.png 780301815.269.png 780301815.270.png 780301815.271.png 780301815.272.png 780301815.273.png 780301815.274.png 780301815.275.png 780301815.277.png 780301815.278.png 780301815.279.png 780301815.280.png 780301815.281.png 780301815.282.png 780301815.283.png 780301815.284.png 780301815.285.png 780301815.286.png 780301815.288.png 780301815.289.png 780301815.290.png 780301815.291.png 780301815.292.png 780301815.293.png 780301815.294.png 780301815.295.png 780301815.296.png 780301815.297.png 780301815.299.png 780301815.300.png 780301815.301.png 780301815.302.png 780301815.303.png 780301815.304.png 780301815.305.png 780301815.306.png 780301815.307.png 780301815.308.png 780301815.310.png 780301815.311.png 780301815.312.png 780301815.313.png 780301815.314.png 780301815.315.png 780301815.316.png 780301815.317.png 780301815.318.png 780301815.319.png 780301815.321.png 780301815.322.png 780301815.323.png 780301815.324.png 780301815.325.png
Zgłoś jeśli naruszono regulamin