INTRODUCTION TO THE APPENDIX THE reader who has followed the foregoing narrative may feel that inasmuch as it is intended to be an historical document, an appropriate addendum thereto would be a digest of all the inventions of Edison. The desirability of such a digest is not to be denied, but as there are some twenty-five hundred or more inventions to be considered (including those covered by caveats), the task of its preparation would be stupendous. Besides, the resultant data would extend this book into several additional volumes, thereby rendering it of value chiefly to the technical student, but taking it beyond the bounds of biography. We should, however, deem our presentation of Mr. Edison's work to be imperfectly executed if we neglected to include an intelligible exposition of the broader theoretical principles of his more important inventions. In the following Appendix we have therefore endeavored to present a few brief statements regarding Mr. Edison's principal inventions, classified as to subject- matter and explained in language as free from technicalities as is possible. No attempt has been made to conform with strictly scientific terminology, but, for the benefit of the general reader, well-understood conventional expressions, such as "flow of current," etc., have been employed. It should be borne in mind that each of the following items has been treated as a whole or class, generally speaking, and not as a digest of all the individual patents relating to it. Any one who is sufficiently interested can obtain copies of any of the patents referred to for five cents each by addressing the Commissioner of Patents, Washington, D. C. APPENDIX THE STOCK PRINTER IN these modern days, when the Stock Ticker is in universal use, one seldom, if ever, hears the name of Edison coupled with the little instrument whose chatterings have such tremendous import to the whole world. It is of much interest, however, to remember the fact that it was by reason of his notable work in connection with this device that he first became known as an inventor. Indeed, it was through the intrinsic merits of his improvements in stock tickers that he made his real entree into commercial life. The idea of the ticker did not originate with Edison, as we have already seen in Chapter VII of the preceding narrative, but at the time of his employment with the Western Union, in Boston, in 1868, the crudities of the earlier forms made an impression on his practical mind, and he got out an improved instrument of his own, which he introduced in Boston through the aid of a professional promoter. Edison, then only twenty-one, had less business experience than the promoter, through whose manipulation he soon lost his financial interest in this early ticker enterprise. The narrative tells of his coming to New York in 1869, and immediately plunging into the business of gold and stock reporting. It was at this period that his real work on stock printers commenced, first individually, and later as a co-worker with F. L. Pope. This inventive period extended over a number of years, during which time he took out forty-six patents on stock-printing instruments and devices, two of such patents being issued to Edison and Pope as joint inventors. These various inventions were mostly in the line of development of the art as it progressed during those early years, but out of it all came the Edison universal printer, which entered into very extensive use, and which is still used throughout the United States and in some foreign countries to a considerable extent at this very day. Edison's inventive work on stock printers has left its mark upon the art as it exists at the present time. In his earlier work he directed his attention to the employment of a single-circuit system, in which only one wire was required, the two operations of setting the type-wheels and of printing being controlled by separate electromagnets which were actuated through polarized relays, as occasion required, one polarity energizing the electromagnet controlling the type- wheels, and the opposite polarity energizing the electromagnet controlling the printing. Later on, however, he changed over to a two-wire circuit, such as shown in Fig. 2 of this article in connection with the universal stock printer. In the earliest days of the stock printer, Edison realized the vital commercial importance of having all instruments recording precisely alike at the same moment, and it was he who first devised (in 1869) the "unison stop," by means of which all connected instruments could at any moment be brought to zero from the central transmitting station, and thus be made to work in correspondence with the central instrument and with one another. He also originated the idea of using only one inking-pad and shifting it from side to side to ink the type-wheels. It was also in Edison's stock printer that the principle of shifting type-wheels was first employed. Hence it will be seen that, as in many other arts, he made a lasting impression in this one by the intrinsic merits of the improvements resulting from his work therein. We shall not attempt to digest the forty-six patents above named, nor to follow Edison through the progressive steps which led to the completion of his universal printer, but shall simply present a sketch of the instrument itself, and follow with a very brief and general explanation of its theory. The Edison universal printer, as it virtually appears in practice, is illustrated in Fig. 1 below, from which it will be seen that the most prominent parts are the two type-wheels, the inking-pad, and the paper tape feeding from the reel, all appropriately placed in a substantial framework. The electromagnets and other actuating mechanism cannot be seen plainly in this figure, but are produced diagrammatically in Fig. 2, and somewhat enlarged for convenience of explanation. It will be seen that there are two electromagnets, one of which, TM, is known as the "type-magnet," and the other, PM, as the "press-magnet," the former having to do with the operation of the type- wheels, and the latter with the pressing of the paper tape against them. As will be seen from the diagram, the armature, A, of the type-magnet has an extension arm, on the end of which is an escapement engaging with a toothed wheel placed at the extremity of the shaft carrying the type-wheels. This extension arm is pivoted at B. Hence, as the armature is alternately attracted when current passes around its electromagnet, and drawn up by the spring on cessation of current, it moves up and down, thus actuating the escapement and causing a rotation of the toothed wheel in the direction of the arrow. This, in turn, brings any desired letters or figures on the type-wheels to a central point, where they may be impressed upon the paper tape. One type-wheel carries letters, and the other one figures. These two wheels are mounted rigidly on a sleeve carried by the wheel-shaft. As it is desired to print from only one type-wheel at a time, it becomes necessary to shift them back and forth from time to time, in order to bring the desired characters in line with the paper tape. This is accomplished through the movements of a three-arm rocking-lever attached to the wheel-sleeve at the end of the shaft. This lever is actuated through the agency of two small pins carried by an arm projecting from the press-lever, PL. As the latter moves up and down the pins play upon the under side of the lower arm of the rocking- lever, thus canting it and pushing the type-wheels to the right or left, as the case may be. The operation of shifting the type-wheels will be given further on. The press-lever is actuated by the press-magnet. From the diagram it will be seen that the armature of the latter has a long, pivoted extension arm, or platen, trough-like in shape, in which the paper tape runs. It has already been noted that the object of the press-lever is to press this tape against that character of the type-wheel centrally located above it at the moment. It will at once be perceived that this action takes place when current flows through the electromagnet and its armature is attracted downward, the platen again dropping away from the type-wheel as the armature is released upon cessation of current. The paper "feed" is shown at the end of the press-lever, and consists of a push "dog," or pawl, which operates to urge the paper forward as the press-lever descends. The worm-gear which appears in the diagram on the shaft, near the toothed wheel, forms part of the unison stop above referred to, but this device is not shown in full, in order to avoid unnecessary complications of the drawing. At the right-hand side of the diagram (Fig. 2) is shown a portion of the transmitting apparatus at a central office. Generally speaking, this consists of a motor-driven cylinder having metallic pins placed at intervals, and arranged spirally, around its periphery. These pins correspond in number to the characters on the type-wheels. A...
angielski_i_stuff