backtrack-4-cuda-guide.pdf
(
1760 KB
)
Pobierz
Microsoft Word - BackTrack - th3 pwnsauce.doc
BackTrack 4 CUDA Guide
Written by
Pureh@te
1
Table of Contents
What is CUDA? ................................................................................................................................................................. 3
Supported GPUs ................................................................................................................................................................ 3
Why do I care about CUDA?.............................................................................................................................................. 3
Where can I get this CUDA thing? ..................................................................................................................................... 3
What is CUDA not? ........................................................................................................................................................... 4
Getting started.................................................................................................................................................................... 4
Nvidia-drivers: ............................................................................................................................................................. 4
Overclocking: ............................................................................................................................................................... 5
Installing the CUDA toolkit and SDK : ......................................................................................................................... 8
CUDA Tools.................................................................................................................................................................... 12
CUDA-multiforcer:..................................................................................................................................................... 12
Pyrit ........................................................................................................................................................................... 14
What is pyrit?........................................................................................................................................................ 14
Up and running with pyrit...................................................................................................................................... 14
Making sure Pyrit is working:................................................................................................................................ 15
Passthrough Mode: ................................................................................................................................................ 16
Passthrough with Crunch: ...................................................................................................................................... 17
Server / Client Mode: ............................................................................................................................................ 21
Building aircrack-ng with CUDA support: .................................................................................................................. 23
Cuda Debugger:.......................................................................................................................................................... 24
Useful Links: ................................................................................................................................................................... 25
Special Thanks:................................................................................................................................................................ 25
2
What is CUDA?
CUDA (an acronym for Compute Unified Device Architecture) is a parallel computing architecture
developed by NVIDIA. CUDA lets programmers utilize a dedicated driver written using C language
subroutines to offload data processing to the graphics processing hardware found on Nvidia's late-
model GeForce graphics hardware. The software lets programmers use the cards to process data
other than just graphics, without having to learn OpenGL or how to talk with the card specifically.
Since CUDA tools first emerged in late 2006, Nvidia's seen them used in everything from consumer
software to industrial products, and the applications are limitless.
Supported GPUs
A complete list of supported GPU's can be found at the following link:
http://en.wikipedia.org/wiki/CUDA#Supported_GPUs
Why do I care about CUDA?
Hardware acceleration of password recovery is possible with CUDA enabled applications. Many of
these applications are already available and there are many more to come. The support of NVIDIA
graphic accelerators increases the recovery speed by an average of 10 to 15 times faster than was
previously possible.
Where can I get this CUDA thing?
Backtrack 4 pre final comes fully ready to execute and build CUDA powered applications. I will
review some of the major points involved in setting up the environment and running some of the
application.
3
What is CUDA not?
CUDA is not a magic bullet that will suddenly make all software on an Nvidia-equipped PC run
dramatically faster, in other words -- the programmer needs to figure out where the program can be
optimized to process data in parallel. But within that context, programming support for CUDA can
make a big difference.
Getting started
N
vidia-drivers:
The first thing we need to do is get the nvidia drivers installed. This is done easily with Backtracks
package manger apt-get. Installing the nvidia drivers is best done while the X server is not running.
The X server can be stopped by pressing ctrl – alt -backspace.
Once you get the drivers installed, a new xorg-config should be generated for you and then you can
“startx” and return to the kde desktop environment.
4
In the event the auto xorg.conf does not work, nvidia provides a utility which may be able to help.
To invoke it simply type “nvidia-xconfig” into a terminal and it will try to generate a new xorg
config for you.
If you have multiple monitors you may need to use the nvidia-settings tool to configure them. In
order to use the settings tool, either launch it from the KDE menu or run the command “nvidia-
settings” in a terminal. The actual configuration is beyond the scope of this document however its
fairly easy to understand.
Overclocking:
There are two ways to overclock your video card in Linux. The first way is to use the nvidia-
settings tool which comes with the nvidia-driver. In order to do this you need to edit your xorg.conf
in order to unlock the option.
nano /etc/X11/xorg.conf
and find the section that looks like this:
Section "Device"
Identifier "Videocard1"
Driver "nvidia"
VendorName "NVIDIA Corporation"
BoardName "GeForce 8800 GT"
BusID "PCI:3:0:0"
Screen 1
Option "AddARGBGLXVisuals" "true"
Option "Coolbits" "1"
Option "RenderAccel" "true"
EndSection
Add the coolbits option and then restart X and open nvidia-settings and you should have a
overclock option like this:
5
Plik z chomika:
megaq33
Inne pliki z tego folderu:
2010_szczecinski_inz_v_end.pdf
(1281 KB)
ag241euv2.pdf
(374 KB)
Algorytmy asymetryczne i haszujace.ppt
(904 KB)
algorytmy PKI-Instrukcja.pdf
(330 KB)
backtrack-4-cuda-guide.pdf
(1760 KB)
Inne foldery tego chomika:
BT5r1-GNOME-64
filmy szkoleniowe
konfiguracja
praca dyplom mniej wazne
praca dyplomowa do przegladu
Zgłoś jeśli
naruszono regulamin