How To Find Hidden Cameras.pdf

(258 KB) Pobierz
How to find hidden cameras
How to find hidden cameras
Marc Roessler
marc@tentacle.franken.de
March 25, 2002
“We shall meet in the place where there is no darkness”
– 1984, George Orwell
Abstract
While it was easy to spot cameras twenty years ago due to their large size, this
has become increasingly difficult during the last decade. Cameras have become
much smaller and consume a fraction of the power they did ten years ago. Due to
this, covert installation in nearly any imaginable place is possible. This paper will
show methods frequently used for hiding cameras as well as methods to detect and
locate covertly installed cameras.
Document available at http://www.franken.de/users/tentacle/papers/
1 Introduction
During the last few years the number of surveillance cameras has grown out of bounds.
Cameras have been installed in many public and semi-public places such as universities
[1], streets, supermarkets, gas stations, parking garages, cinemas, bars, shops, busses,
train stations and even discos.
About 25 million CCTV 1 cameras are estimated to be in operation worldwide at
the time of writing [2]. Some countries, notably Great Britain, are trying to fully cover
every corner of public life with cameras. The Privacy International CCTV page [3]
states that between 225 and 450 Million Dollars are spent on surveillance technology
in Britain per year, involving an estimated 300.000 cameras. These efforts result in a
person driving through the city of London being filmed at least once every five minutes
[4]. In the near future cameras may even be installed in all taxis, keeping an eye on
the passengers [5]. In Houston, Texas, about 400 cabs have been equipped with such
cameras [6].
1 Closed Circuit Television
1
6475902.002.png
It may not be obvious right away why it could be of any importance to anyone to
be able to locate hidden cameras. Some will reason that concealed cameras are more or
less exotic and thus knowledge on how to find them is not necessary at all. Others even
consider interest in how to locate hidden cameras to border the criminal. Both parties
err, as shall be illustrated in the following.
Contrary to common belief, hidden cameras are nowhere close to exotic. In 1996
David Fletcher, chief executive of the British Security Industry Association, estimated
that employers were spending 12 million british pounds a year on covert camera equip-
ment to monitor their staff [7, p.49]. A survey conducted by the American Manage-
ment Association found that “33 percent of major U.S. firms say they tape employees
– overtly or covertly – to counter theft, violence, or sabotage” [8]. There have been
several reports of staff being monitored in changing rooms without their consent [9].
Subminiature cameras were even discovered by the author of this paper during treat-
ment at an oral surgeon’s practice: the camera was plastered into the ceiling next to a
ceiling light.
Subminiature camera modules are available for as cheap as $ 25 and even ready to
use wireless subminiature cameras can be legally bought. Ease of use and the drop-
ping prices highly contributed to the popularity of subminiature cameras. In effect
highly miniaturized cameras can be bought, installed and operated even by the aver-
age citizen lacking financial resources and technical expertise. Due to this it is not
uncommon for subminiature cameras to turn up in places that are in fact neither public
nor semi-public. There is a growing number of reports of covert cameras spying on
unsuspecting persons in showers, bedrooms and changing rooms [11]. Knowing how
to find covert cameras makes the voyeur’s job harder. Often even legally installed and
operated CCTV cameras are abused to peep on women for voyeuristic purposes. An
analysis showed that 15 percent of all targeted CCTV surveillances on women initiated
by the camera operator were for “apparently voyeuristic reasons” [7, p.129].
While there is concern that persons interested in finding hidden cameras may have
criminal intentions, there are legitimate reasons for such interest as well. One important
reason can be concern about privacy and personal freedom. Especially the growing use
of face recogniton software [12, 13, 14, 15, 16] is being strongly criticized [17]. There
is no way to distinguish cameras that are connected to face recognition systems from
those that are not. This is why persons who consider face recognition to touch their
personal freedom may choose to avoid surveillance cameras altogether. For instance,
they may decide to avoid stores that excessively use video cameras and visit stores that
do use significantly less or even none at all. This is not possible unless the presence
of cameras is detected in the first place. In countries with lenient privacy protection
laws video sequences captured by CCTV cameras may even be legally shown on TV
[18], no matter how humilating this may be for the affected persons (for an example
see [19]).
Some people might argue that cameras are easy to find and this paper is therefore
unnecessary. Be assured that searching for covert cameras is in no way trivial. A mod-
ern camera including transmitter and batteries will easily fit inside a box of cigarettes.
The Institute of Microtechnology of the University of Neuchatel (Switzerland) is de-
2
signing CMOS based subminiature cameras small enough to fit inside a pen [20]. The
US company Given ® Imaging has even developed an “Ingestible Imaging Capsule”
for medical applications that is small enough to be swallowed. The capsule contains a
color camera, batteries and a transmitter [21]. Given the size of those cameras it should
be clear by now why naive attempts to find cameras will not yield reliable results.
2 Types of cameras and lenses
The focus of this paper will be on electronic cameras. Subminiature photographic cam-
eras exist as well, but those are not as popular as electronic cameras. This is because
electronic cameras are more flexible to install and operate. They facilitate real time
analysis and can be installed in places that are not easily accessible, since there is no
need for changing films. On the other hand photographic cameras provide images far
superior in quality to those of standard subminiature video cameras.
Ancient electronic cameras used camera tubes [22, 23] to convert the virtual image
of the filmed object to an electronic signal. There are several tube designs [24] which
all suffer from drawbacks such as high power consumption, sensitivity to mechanical
stress, large size, short lifetime of the picture tube or high lag. Although there are still
many tube based surveillance cameras in operation, they are of low importance con-
cerning covert surveillance. Therefore this paper will focus on modern semiconductor
based cameras.
The camera does not need to be in the same room as the object under surveillance.
It is possible to connect the primary lens to the camera by means of fibre optics [25],
which are very similar to those used for medical applications. One advantage of this
approach is that very little space is needed where the lens is to be installed. Another
advantage is that detection of the lens can be made more difficult by using lens assem-
blies made of non conductive materials. Lenses prepared this way can not be detected
with metal detectors. Still another advantage is that otherwise inaccessible rooms can
be surveilled by feeding the fibre cable through sewage or air condition ducts.
Fig. 1 shows some ways to obscure the camera’s lens. Lenses obscured as nail,
screw, or rivet head can be seen. Alternatively the lens may be masked as a shirt button
(not shown).
Fig. 1: Obscuring the camera’s lens (Picture courtesy of www.alarm.de)
3
6475902.003.png
2.1 CCD cameras
CCD 2 cameras are much smaller than tube based cameras and consume far less power,
typically two to five Watts [26]. Particularly interesting for covert surveillance are
subminiature CCD board cameras. Subminiature here means something like 32 mm
square and 10 mm depth including lens and electronics. A ”board camera” is a camera
fully contained on a single circuit board including camera optics and all the electronics
needed for generating the standardized video signal.
CCD cameras are available as monochrome (i.e. black and white) and (more ex-
pensive) color versions. Several lenses are available such as tele (“zoom”), fisheye
(wide viewing angle) and pinhole. Pinhole lenses are small diameter fisheye lenses of
typically 2 mm or less in diameter. Pinhole lens cameras are particularly interesting for
concealed surveillance applications because they can film through very small holes 3
and even through light-weaved cotton. Monochrome cameras usually are more light
sensitive (0.5 to 2 Lux) than their color counterparts (about 3 Lux). A pinhole black
and white CCD board camera can bee seen in Fig. 2 at the right side.
Historically the major advantage of CCD cameras has been superior picture quality,
but CMOS cameras (see below) are catching up rapidly. Compared to CMOS cameras,
the CCD camera’s disadvantages are large size, high power consumption and bloom-
ing. Blooming means “leakage” of bright pixels to neighbouring pixels. Bright parts
of the picture such as light sources facing the camera will look smeared [27]. An-
other disadvantage is that CCD cameras can only be operated at temperatures below
approximately 55 degrees celsius [28]. In addition they have rather low dynamic range
compared to CMOS cameras. This means that CCD cameras will fail to record very
brightly lit and very dark objects at the same time. Bright parts of the picture will be
overexposed while darker areas will only show black [28].
Black and white CCD cameras are sensitive not only to human visible light but also
to radiation in the near infrared (IR) spectrum. This can be demonstrated by having the
camera “look” into an active IR remote control as used for most TVs and VCRs. IR
remote conrols use light with a wavelength of approximately 900 nm. Light of this
wavelength is invisible to humans but can be detected by black and white CCD cam-
eras. The IR pulses that are emitted by the remote control can be seen as a flashing light
on the video monitor. This offers some interesting possibilities. If an artificial source
of IR radiation is supplied, monochrome CCD cameras can be used without any hu-
man visible light source. In effect such cameras can film in “complete darkness”. The
mentioned IR emitter can comprise several IR-LEDs 4 grouped together, for example.
Another possibility is to use a modified halogen floodlight with an IR pass filter ap-
plied to it. In some multiplex movie theatres there are CCD cameras and IR floodlights
mounted at the ceiling above the screen, facing the audience. This enables personnel to
take a look at what the audience is doing even in complete “darkness”. Color cameras
are sensitve to IR radiation as well, but in practice IR sensitivity is too low to be of any
use.
2 Charge Coupled Device
3 In many cases 1 mm is sufficent.
4 Light Emitting Diode
4
6475902.004.png
2.2 CMOS cameras
Another type of camera which has shown up recently in the catalogues of electronics
vendors is based on CMOS 5 technology. CMOS cameras were quite rare a few years
ago but are now gaining ground with consumer products such as small handheld de-
vices and webcams. They are available as monochrome and color version with several
lenses such as pinhole and fisheye to choose from. Subminiature CMOS cameras usu-
ally do not come as board cameras but rather as modules packaged in small plastic
cases, as can be seen in Fig. 2. They are about half the price of CCD cameras, less
sensitive to electrical distortions, may be operated at temperatures ranging from -40 to
+120 degrees celsius [28] and consume far less power (20 to 50 mW) than their CCD
counterparts [29, 26]. They can be built much smaller than CCD cameras as major
parts of the necessary circuitry can be built directly onto the substrate that carries the
light sensors. Just like CCD cameras they are sensitive to IR radiation [23]. In addition
they have a high dynamic range [28], i.e. very bright objects and very dark objects can
be recorded satisfactorily at the same time.
CMOS cameras have disadvantages as well. Because each pixel comes with a
piece of circuitry of its own which consumes room and light, CMOS cameras are not
as light sensitive as CCD cameras [30]. Another disadvantage is the lower picture
quality, as the individual pixels are quite noisy. There are APS (Active Pixel Sensor)
CMOS cameras available which attempt to cancel out the noise, but those are more
expensive than the standard PPS (Passive Pixel Sensor) cameras [30]. CMOS cameras
do have significant advantages over CCD cameras in regard to noise if large pixel arrays
(megapixel arrays) are to be built [31].
CMOS imagers are likely to supersede CCD imagers within the next few years,
especially on the consumer market. For more detailed comparisons of CMOS and
CCD cameras see [32].
Fig. 2: CMOS (left) and CCD (right) pinhole camera
5 Complementary Metal Oxide Silicon
5
6475902.005.png 6475902.001.png
Zgłoś jeśli naruszono regulamin