Theory_of_Functions_of_a_Real_Variable-S_Sternberg.pdf

(1504 KB) Pobierz
134150259 UNPDF
Theoryoffunctionsofarealvariable.
ShlomoSternberg
May10,2005
2
Introduction.
Ihavetaughtthebeginninggraduatecourseinrealvariablesandfunctional
analysisthreetimesinthelastfiveyears,andthisbookistheresult.The
courseassumesthatthestudenthasseenthebasicsofrealvariabletheoryand
pointsettopology.Theelementsofthetopologyofmetricsspacesarepresented
(inthenatureofarapidreview)inChapterI.
Thecourseitselfconsistsoftwoparts:1)measuretheoryandintegration,
and2)Hilbertspacetheory,especiallythespectraltheoremanditsapplications.
InChapterIIIdothebasicsofHilbertspacetheory,i.e.whatIcando
withoutmeasuretheoryortheLebesgueintegral.Theherohere(andperhaps
forthefirsthalfofthecourse)istheRieszrepresentationtheorem.Included
isthespectraltheoremforcompactself-adjointoperatorsandapplicationsof
thistheoremtoellipticpartialdierentialequations.Thepdematerialfollows
closelythetreatmentbyBersandSchecterinPartialDierentialEquationsby
Bers,JohnandSchecterAMS(1964)
ChapterIIIisarapidpresentationofthebasicsabouttheFouriertransform.
ChapterIVisconcernedwithmeasuretheory.ThefirstpartfollowsCaratheodory’s
classicalpresentation.ThesecondpartdealingwithHausdormeasureanddi-
mension,Hutchinson’stheoremandfractalsistakeninlargepartfromthebook
byEdgar,Measuretheory,Topology,andFractalGeometrySpringer(1991).
Thisbookcontainsmanymoredetailsandbeautifulexamplesandpictures.
ChapterVisastandardtreatmentoftheLebesgueintegral.
ChaptersVI,andVIIIdealwithabstractmeasuretheoryandintegration.
ThesechaptersbasicallyfollowthetreatmentbyLoomisinhisAbstractHar-
monicAnalysis.
ChapterVIIdevelopsthetheoryofWienermeasureandBrownianmotion
followingaclassicalpaperbyEdNelsonpublishedintheJournalofMathemat-
icalPhysicsin1964.Thenwestudytheideaofageneralizedrandomprocess
asintroducedbyGelfandandVilenkin,butfromapointofviewtaughttous
byDanStroock.
Therestofthebookisdevotedtothespectraltheorem.Wepresentthree
proofsofthistheorem.Thefirst,whichiscurrentlythemostpopular,derives
thetheoremfromtheGelfandrepresentationtheoremforBanachalgebras.This
ispresentedinChapterIX(forboundedoperators).Inthischapterweagain
followLoomisratherclosely.
InChapterXweextendtheprooftounboundedoperators,followingLoomis
andReedandSimonMethodsofModernMathematicalPhysics.Thenwegive
Lorch’sproofofthespectraltheoremfromhisbookSpectralTheory.Thishas
theflavorofcomplexanalysis.ThethirdproofduetoDavies,presentedatthe
endofChapterXIIreplacescomplexanalysisbyalmostcomplexanalysis.
Theremainingchapterscanbeconsideredasgivingmorespecializedin-
formationaboutthespectraltheoremanditsapplications.ChapterXIisde-
votedtooneparametersemi-groups,andespeciallytoStone’stheoremabout
theinfinitesimalgeneratorofoneparametergroupsofunitarytransformations.
ChapterXIIdiscussessometheoremswhichareofimportanceinapplicationsof
3
thespectraltheoremtoquantummechanicsandquantumchemistry.Chapter
XIIIisabriefintroductiontotheLax-Phillipstheoryofscattering.
4
Contents
1Thetopologyofmetricspaces 13
1.1Metricspaces............................. 13
1.2Completenessandcompletion..................... 16
1.3NormedvectorspacesandBanachspaces.............. 17
1.4Compactness.............................. 18
1.5TotalBoundedness........................... 18
1.6Separability............................... 19
1.7SecondCountability.......................... 20
1.8ConclusionoftheproofofTheorem1.5.1.............. 20
1.9Dini’slemma.............................. 21
1.10TheLebesgueoutermeasureofanintervalisitslength. ..... 21
1.11Zorn’slemmaandtheaxiomofchoice................ 23
1.12TheBairecategorytheorem. .................... 24
1.13Tychono’stheorem.......................... 24
1.14Urysohn’slemma............................ 25
1.15TheStone-Weierstrasstheorem.................... 27
1.16Machado’stheorem. ......................... 30
1.17TheHahn-Banachtheorem...................... 32
1.18TheUniformBoundednessPrinciple................. 35
2HilbertSpacesandCompactoperators. 37
2.1Hilbertspace.............................. 37
2.1.1Scalarproducts. ....................... 37
2.1.2TheCauchy-Schwartzinequality............... 38
2.1.3Thetriangleinequality.................... 39
2.1.4Hilbertandpre-Hilbertspaces................ 40
2.1.5ThePythagoreantheorem. ................. 41
2.1.6ThetheoremofApollonius.................. 42
2.1.7ThetheoremofJordanandvonNeumann. ........ 42
2.1.8Orthogonalprojection..................... 45
2.1.9TheRieszrepresentationtheorem. ............. 47
2.1.10WhatisL 2 (T)?........................ 48
2.1.11Projectionontoadirectsum................. 49
2.1.12Projectionontoafinitedimensionalsubspace........ 49
5
Zgłoś jeśli naruszono regulamin