opracowania_wymagania_instal_el.doc

(6759 KB) Pobierz
mgr inż

3

 

mgr inż. Andrzej Boczkowski              Warszawa, 2.02.2008 r.
Stowarzyszenie Elektryków Polskich
Sekcja Instalacji i Urządzeń Elektrycznych

Instalacje elektryczne w obiektach budowlanych.
Wybrane wymagania dla instalacji
modernizowanych lub nowo budowanych

Od instalacji elektrycznych wymaga się aby były funkcjonalne, trwałe i estetyczne oraz bezpieczne w użytkowaniu.

Bezpieczeństwo użytkowania instalacji elektrycznych sprowadza się do zapewnienia ochrony przed następującymi podstawowymi zagrożeniami:

¾       porażeniem prądem elektrycznym,

¾       prądami przeciążeniowymi i zwarciowymi,

¾       przepięciami łączeniowymi i pochodzącymi od wyładowań atmosferycznych,

¾       skutkami cieplnymi.

Skuteczność ochrony przed wyżej wymienionymi zagrożeniami zależy od zastosowanych,
w instalacjach elektrycznych, rozwiązań oraz środków technicznych.

Miarą skuteczności tej ochrony jest liczba śmiertelnych wypadków porażeń prądem elektrycznym oraz liczba pożarów, będących następstwem wad lub nieprawidłowej eksploatacji instalacji elektrycznych.

Z przeprowadzonych analiz wynika, że liczba śmiertelnych wypadków porażeń prądem elektrycznym w ciągu roku, przypadająca na jeden milion mieszkańców w Polsce zmniejszyła się z 9,5 w latach 1980 ¸ 1985 do 4,2 w latach 2000 ¸ 2006 z tendencją dalszego zmniejszania się w następnych latach. Jednak nadal liczba śmiertelnych wypadków porażeń prądem elektrycznym jest w Polsce 2 ¸ 3-krotnie większa niż w krajach Zachodniej Europy. Liczba śmiertelnych wypadków poza statystycznym miejscem pracy, spowodowanych porażeniem prądem elektrycznym, w stosunku do ogółu śmiertelnych wypadków porażeń prądem elektrycznym wynosi w Polsce około 90 %.

Wynika z tego, że niebezpieczeństwo śmiertelnych porażeń prądem elektrycznym występuje przede wszystkim w mieszkaniach i budynkach mieszkalnych oraz w gospodarstwach rolniczych i ogrodniczych.

Nadal najwięcej wypadków odnotowuje się na wsi, prawie dwukrotnie większy wskaźnik śmiertelnych wypadków w stosunku do wypadków w mieście. Równie częste są przypadki powstania pożarów spowodowanych niesprawną instalacją elektryczną. Ich procentowy udział w ogólnej liczbie pożarów w budynkach, według danych za 2006 rok, jest na
poziomie 12 %.

Zasadniczy wpływ na dużą liczbę śmiertelnych porażeń prądem elektrycznym oraz pożarów w Polsce ma na ogół zły stan techniczny instalacji elektrycznych w obiektach budowlanych,
w tym w mieszkaniach i budynkach mieszkalnych oraz w gospodarstwach rolniczych
i ogrodniczych, a także stosowanie niedoskonałych i niewystarczających środków ochrony przed zagrożeniami w tych instalacjach, a mianowicie:

¾       powszechne stosowanie układu sieci TN-C w instalacjach elektrycznych z przewodami
o małych przekrojach (1,5 ¸ 10 mm2) przeważnie aluminiowymi, zwiększającymi możliwość uszkodzeń mechanicznych i przerw, szczególnie w przewodach ochronno-neutralnych PEN występujących w tym układzie sieci. Stąd wynikające często przypadki pojawiania się na obudowach metalowych odbiorników napięć dotykowych wyższych
od dopuszczalnych długotrwale. Również pojawianie się na przewodzie PEN napięcia niekorzystnego dla użytkowanych odbiorników, wywołanego przepływem przez ten przewód prądu wyrównawczego, spowodowanego zaistnieniem asymetrii prądowej
w instalacji,

¾       stosowanie układu sieci TT, nie zawsze gwarantującego skuteczność ochrony przeciwporażeniowej, głównie z uwagi na dość często występujące trudności w zapewnieniu wymaganych rezystancji uziemień oraz przypadki przerw w przewodach  uziemiających,

¾       niestosowanie połączeń wyrównawczych dodatkowych (miejscowych), a także bardzo często połączeń wyrównawczych głównych,

¾       niestosowanie ochrony przed dotykiem pośrednim (ochrony przy uszkodzeniu) w pomieszczeniach o podłodze źle przewodzącej, przeznaczonych na stały pobyt ludzi, pomimo występowania w tych pomieszczeniach metalowych uziemionych rur i grzejników centralnego ogrzewania oraz metalowych rur wodociągowych i gazowych,

¾       niestosowanie wyłączników ochronnych różnicowoprądowych,

¾       niestosowanie ograniczników przepięć,

¾       w rozwiązaniach instalacji elektrycznych prowadzenie przewodów w sposób wyklucza­jący ich wymienialność,

¾       stosowanie zbyt małej liczby obwodów odbiorczych oraz gniazd wtyczkowych i wypu­stów oświetleniowych.

W Polsce, w miastach i na wsi, istnieje ponad 11 milionów mieszkań oraz ponad 2 miliony gospodarstw rolniczych i ogrodniczych.

Instalacje elektryczne w tych obiektach, z wyjątkiem budowanych w ostatnich latach,
nie odpowiadają wymaganiom „Warunków technicznych, jakim powinny odpowiadać budynki
i ich usytuowanie” oraz wymaganiom Polskiej Normy PN-IEC 60364 „Instalacje elektryczne
w obiektach budowlanych”.

Są to instalacje elektryczne nie w pełni sprawne, będące źródłem wyżej wymienionych zagrożeń.

Istnieje w związku z tym konieczność modernizacji instalacji elektrycznych w obiektach budowlanych, w tym szczególnie w mieszkaniach i budynkach mieszkalnych oraz w gospodarstwach rolniczych i ogrodniczych.

W instalacjach modernizowanych i przebudowywanych lub nowo budowanych należy zapewnić konieczność realizacji nowych, preferowanych rozwiązań, które są objęte wymaganiami „Warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie” oraz wymaganiami Polskich Norm, powołanych w tych Warunkach Technicznych, w tym przede wszystkim wymaganiami normy PN-IEC 60364 „Instalacje elektryczne w obiektach budowlanych”.

 



Przytoczone przepisy ustalają między innymi niżej wymienione wymagania.

1.   Układy sieci

       Norma PN/E-05009, a następnie PN-IEC 60364 wprowadziła pojęcie układów sieci. Schematy układów sieci przedstawiono na rysunku nr 1.

Dotychczas w kraju najczęściej stosowany był układ sieci TN-C. W układzie tym występuje przewód ochronno-neutralny PEN.

Zgodnie z postanowieniami normy w instalacjach elektrycznych ułożonych na stałe, przewód ochronno-neutralny PEN powinien mieć przekrój żyły nie mniejszy niż 10 mm2 Cu lub
16 mm2 Al.

Oznaczenia:              L1; L2; L3 - przewody fazowe prądu przemiennego; N - przewód neutralny;
PE - przewód ochronny lub uziemienia ochronnego; PEN - przewód ochronno-neutralny; FE - przewód uziemienia funkcjonalnego; Z - impedancja

Rys. 1.              Schematy stosowanych układów sieci TN (TN-C; TN-S; TN-C-S), TT oraz IT


19

 

W związku z niewłaściwą relacją pomiędzy przekrojami przewodu PEN i przewodów fazowych L, w odniesieniu do instalacji elektrycznej w budynkach (przekrój przewodu PEN
w większości przypadków może kilkakrotnie przewyższać przekroje przewodów fazowych L) oraz dążeniem do poprawy stanu bezpieczeństwa przeciwporażeniowego użytkowników, koniecznością staje się stosowanie układu sieci TN-S lub TN-C-S.

Układy te zapewniają rozdzielenie funkcji przewodu ochronno-neutralnego PEN na przewód ochronny PE i neutralny N oraz likwidują szereg niepożądanych zjawisk, takich jak:

¾       pojawienie się napięcia fazowego na obudowach metalowych odbiorników, wywołane przerwą ciągłości przewodu PEN,

¾       pojawienie się na przewodzie PEN napięcia niekorzystnego dla użytkowanych odbiorników, wywołanego przepływem przez ten przewód prądu wyrównawczego, spowodowanego zaistnieniem asymetrii prądowej w instalacji.

Rozdzielenie funkcji przewodu ochronno-neutralnego PEN na przewód ochronny PE
i neutralny N, w przypadku układu sieci TN-C-S, powinno następować w złączu lub
w rozdzielnicy głównej budynku, a punkt rozdziału powinien być uziemiony.

Zapewnia to utrzymanie potencjału ziemi na przewodzie ochronnym PE przyłączonym do części przewodzących dostępnych urządzeń elektrycznych w normalnych warunkach pracy instalacji elektrycznej.

Możliwie licznie uziemiane powinny być również przewody ochronne PE i ochronno-neutralne PEN.

Wielokrotne uziemianie przewodu ochronnego PE i ochronno-neutralnego PEN w układzie sieci TN, w którym stosowane jest samoczynne wyłączenie zasilania, jako ochrona przed dotykiem pośrednim (ochrona przy uszkodzeniu), powoduje:

¾       obniżenie napięcia na nieuszkodzonym przewodzie ochronnym PE lub ochronno-neutralnym PEN połączonym z miejscem zwarcia,

¾       utworzenie drogi zastępczej prądu zwarciowego w przypadku przerwania przewodu ochronnego PE lub ochronno-neutralnego PEN,

¾       obniżenie napięcia na przewodzie ochronnym PE lub ochronno-neutralnym PEN, który został przerwany (odłączony od punktu neutralnego sieci) i który jest jednocześnie połączony z miejscem zwarcia,

¾       obniżenie napięcia, które może pojawić się na przewodzie ochronnym PE lub ochronno-neutralnym PEN podczas zwarć doziemnych w stacji zasilającej po stronie wyższego napięcia, gdy w stacji wykonano wspólne uziemienie urządzeń wysokiego i niskiego napięcia,

¾       ograniczenie asymetrii napięć podczas zwarć doziemnych.

Instalacja elektryczna w budynkach powinna być realizowana w układzie sieci TN-S (przewody L1; L2; L3; N; PE). Nie wyklucza to stosowania w szczególnie uzasadnionych przypadkach układu sieci TT lub IT.

Możliwe są dwa rozwiązania rozdzielnic (złącze, rozdzielnica główna) w układzie TN-C-S:

¾       z zastosowaniem czterech szyn zbiorczych,

¾       z zastosowaniem pięciu szyn zbiorczych.

Rozwiązania te przedstawiono na rysunku nr 2.

Rys. 2.              Rozdzielnice w układzie TN-C-S

Rozdzielnica przedstawiona na rysunku nr 2a może pracować w układzie TN-C lub TN-C-S, natomiast rozdzielnica przedstawiona na rysunku nr 2b może pracować we wszystkich układach TN , a także w układach TT lub IT, po odpowiednim, dla danego układu sieci, połączeniu lub rozłączeniu szyny PE z szyną N.

Na rysunku nr 3 przedstawiono schemat zasilania pojedynczego budynku (indywidualnego odbiorcy) poprzez zestaw przyłączeniowo-pomiarowy, usytuowany w linii ogrodzenia zewnętrznego posesji. Zestaw ten mieści się w zamkniętej oraz zabezpieczonej przed wpływami atmosferycznymi i osobami niepowołanymi skrzynce. Składa się z dwóch modułów,
z których jeden pełni funkcję zakończenia przyłącza, drugi pełni funkcję złącza końcowego. Zestaw umożliwia zainstalowanie listwy zaciskowej do połączenia przewodów przyłącza sieci zasilającej i przewodów instalacji, zabezpieczenia przedlicznikowego w postaci rozłącznika bezpiecznikowego lub wyłącznika nadprądowego selektywnego – zapewniających selektywność w działaniu urządzeń zabezpieczających, licznika energii elektrycznej oraz ochrony przed przepięciami pochodzącymi od wyładowań atmosferycznych i łączeń w sieci zasilającej (ograniczniki przepięć stanowiące pierwszy stopień ochrony przeciwprzepięciowej).

Bardzo ważną rolę w ekwipotencjalizacji części przewodzących jednocześnie dostępnych
w budynku pełni uziemienie przewodu ochronnego PE instalacji elektrycznej. Określa ono potencjał strefy ekwipotencjalnej w budynku. Uziemienie to powinno być wykonane w budynku, a nie z dala od niego, z wykorzystaniem przede wszystkim uziomu fundamentowego.

Właściwe jest w związku z tym rozwiązanie przedstawione na rysunku nr 3, na którym rozdzielenie przewodu PEN na przewody PE i N wykonano w zestawie przyłączeniowo-pomiarowym ZPP, usytuowanym poza budynkiem, a przewód PE przyłączono do szyny PE w rozdzielnicy tablicowej odbiorcy TRO i uziemiono poprzez główną szynę uziemiającą budynku GSU.


Oznaczenia:              SZ – sieć zasilająca niskiego napięcia; P – przyłącze; ZPP – zestaw przyłączeniowo-pomiarowy; LZ – listwa zaciskowa; RB – rozłącznik bezpiecznikowy lub wyłącznik nadprądowy selektywny; L – przewody fazowe; O – ogranicznik przepięć; SU – szyna uziemiająca; kWh – licznik energii elektrycznej; TRO – rozdzielnica tablicowa odbiorcy; wlz – wewnętrzna linia zasilająca; GSU – główna szyna uziemiająca budynku; IK, IW, ICO, IG – instalacje odpowiednio w kolejności: kanalizacyjna, wodna, centralnego ogrzewania, gazowa; KB – konstrukcja metalowa (elementy metalowe konstrukcji budynku, związane na przykład z fundamentem, ścianami); N, PEN, PE – przewody odpowiednio: neutralny, ochronno-neutralny, ochronny lub połączenia wyrównawczego ochronnego

Rys. 3.              Schemat zasilania w energię elektryczną pojedynczego budynku
(indywidualnego odbiorcy)


2.   Połączenia wyrównawcze główne i dodatkowe (miejscowe)

      Zastosowanie połączeń wyrównawczych ma na celu ograniczenie do wartości dopuszczalnych długotrwale w danych warunkach środowiskowych napięć występujących pomiędzy różnymi częściami przewodzącymi.

Każdy budynek powinien mieć połączenia wyrównawcze główne.

Połączenia wyrównawcze główne realizuje się przez umieszczenie w najniższej (przyziemnej) kondygnacji budynku głównej szyny uziemiającej (zacisku), do której są przyłączone:

¾       przewody uziemienia ochronnego lub ochronno-funkcjonalnego,

¾       przewody ochronne lub ochronno-neutralne,

¾       przewody funkcjonalnych połączeń wyrównawczych, w przypadku ich stosowania,

¾       metalowe rury oraz metalowe urządzenia wewnętrznych instalacji wody zimnej, wody gorącej, kanalizacji, centralnego ogrzewania, gazu, klimatyzacji, metalowe powłoki i pancerze kabli elektroenergetycznych itp.,

¾       metalowe elementy konstrukcyjne budynku, takie jak np. zbrojenia itp.

Elementy przewodzące wprowadzane do budynku z zewnątrz (rury, kable) powinny być przyłączone do głównej szyny uziemiającej możliwie jak najbliżej miejsca ich wprowadzenia.

W pomieszczeniach o zwiększonym zagrożeniu porażeniem, jak np. w łazienkach wyposażonych w wannę lub/i basen natryskowy, hydroforniach, pomieszczeniach wymienników ciepła, kotłowniach, pralniach, kanałach rewizyjnych, pomieszczeniach rolniczych i ogrodniczych oraz przestrzeniach, w których nie ma możliwości zapewnienia ochrony przeciwporażeniowej przez samoczynne wyłączenie zasilania po przekroczeniu wartości napięcia dotykowego dopuszczalnego długotrwale na częściach przewodzących dostępnych, powinny być wykonane połączenia wyrównawcze dodatkowe (miejscowe).

Połączenia wyrównawcze dodatkowe (miejscowe) powinny obejmować wszystkie części przewodzące jednocześnie dostępne, takie jak:

¾       części przewodzące dostępne,

¾       części przewodzące obce,

¾       przewody ochronne wszystkich urządzeń, w tym również gniazd wtyczkowych i wypustów oświetleniowych,

¾       metalowe konstrukcje i zbrojenia budowlane.

Wszystkie połączenia i przyłączenia przewodów biorących udział w ochronie przeciwpo­rażeniowej powinny być wykonane w sposób pewny, trwały w czasie, chroniący przed korozją.

Przewody należy łączyć ze sobą przez zaciski przystosowane do materiału, przekroju oraz   ilości łączonych przewodów, a także środowiska, w którym połączenie to ma pracować.

Na rysunku nr 4 przedstawiono przykład połączeń wyrównawczych głównych w piwnicy oraz połączeń wyrównawczych dodatkowych (miejscowych) w łazience budynku mieszkalnego.


Oznaczenia:              PE – przewód ochronny lub połączenia wyrównawczego ochronnego

Rys. 4.              Połączenia wyrównawcze w budynku mieszkalnym - główne w piwnicy,
oraz dodatkowe (miejscowe) w łazience

Zależności pomiędzy przekrojami przewodów, pełniących różnego rodzaju funkcje, podano
w tablicach nr 1 i 2.


Tablica 1.              Zależności pomiędzy przekrojami przewodów

Przekrój przewodu (mm2)

fazowe-go

ochron-
nego

uziemienia ochronnego
lub ochronno-funkcjonalnego

ochronno-neutralnego

połączenia wyrów-
nawczego głównego

połączenia
wyrównawczego dodatkowego (miejscowego)

połączenia wyrównaw-czego
nieuziemio-nego

SL

SPE/01)

...
Zgłoś jeśli naruszono regulamin