IMO_1969_partial_longlist_problem.pdf
(
144 KB
)
Pobierz
68558419 UNPDF
IMOLonglist1969
IMOShortList/LongListProjectGroup
June19,2004
1. (Belgium1)Inanorthogonalsystemwehavetwoparabolaswithequations:
P
1
: x
2
−2py=0
P
2
: x
2
+2py=0
withp>0.ThelinetisatangentlinetoP
2
.DeterminethelocusofM,poleoftwithrespect
toP
1
.
2. (Belgium2)Findtheequationoftheequilateralhyperboleswhichpassthroughthepoints
A(,0),B(,0),C(0,).ShowthatthehyperbolespassthroughtheorthocenterHoftriangle
ABC.Findthelocusofthecentersofthosehyperboles.Andverifythatthislocuscoincideswit
thenine-pointcircleoftriangleABC.
3. (Belgium3)ThreecirclesC
1
,C
2
,C
3
haveonlyonepointincommon.Constructacirclewhich
istangenttothegiventhreecircles.
4. (Belgium4)AconicispassingthroughtheoriginO.ArightangleisOintersectstheconicin
pointsAandB.ProvethatthelineABpassesthroughafixedpointwhichissituatedonthe
normalonOattheconic.
5. (Belgium5)LetGbethecenterofgravityofagiventriangleOAB.Showthattheconics
whichpassthroughthepointsO,A,B,Garehyperboles.Findthelocusofthecentersofthose
hyperboles.
6. (Belgium6)Calculate
cos
4
+i·sin
4
10
intwodierentwaysandconcludethat
C
1
10
−C
3
10
+
1
3
C
5
10
=2
4
.
GlobalRemark:InthosedaysanalyticgeometrywerethehighlightsinthecurriculaofBelgium.
Allthequestions,especiallythesixthquestion,arequestionswhichappearedinhandbooks.
7. (Bulgaria1)Forallnaturali>2,leth
i
betheinradiusofaregularn-goninscribedintoacircle
withradiusR.Provethat(n+1)h
n+1
−nh
n
>Rforeverynaturaln>2.
RemarkByOrlando:ThisproblemwasaddedtotheIMOLongListfromoneoftheMoro-
zova/Petrakovvolumes.Thelogicalorderhowtheproblemsarelistedinthebookmakesme
assumethattheproblemwasproposedfortheIMO1969.
1
8. (Bulgaria2)Provethattheequation
x
3
+y
3
+z
3
=1969
2
hasnosolutionsinintegernumbers.
RemarkByOrlando:ThisproblemwasaddedtotheIMOLongListfromoneoftheMoro-
zova/Petrakovvolumes.Thelogicalorderhowtheproblemsarelistedinthebookmakesme
assumethattheproblemwasproposedfortheIMO1969.
9. (Bulgaria3)Findallfunctionsf(x)definedforeveryxandsatisfyingtheequation
xf(y)+yf(x)=(x+y)f(x)f(y)
forarbitraryxandy.Showthatonlytwosuchfunctionsarecontinuous.
RemarkByOrlando:ThisproblemwasaddedtotheIMOLongListfromoneoftheMoro-
zova/Petrakovvolumes.Thelogicalorderhowtheproblemsarelistedinthebookmakesme
assumethattheproblemwasproposedfortheIMO1969.
10. (Bulgaria4)Onaplane,considerasquarewithsidelength38cm,and100convexpolygons,
assumingthattheareaofsuchapolygonisalwayscm
2
,andtheperimeterofsuchapolygon
isalways2cm.Provethatthereexistsacirculardiskofradius1cmhavingnocommonpoint
withanyofthese100polygons,butcompletelylyingintheinteriorofthesquare.
RemarkByOrlando:ThisproblemwasaddedtotheIMOLongListfromoneoftheMoro-
zova/Petrakovvolumes.Thelogicalorderhowtheproblemsarelistedinthebookmakesme
assumethattheproblemwasproposedfortheIMO1969.
11. (France1)Letaandbtwopositiveintegers.LetH(a,b)bethesetofnumbersnsatisfying
n=pa+qbwithpandqbeingpositivenumbersincludingzero.DefineH(a)=H(a,a).Show
that,ifa6=bwithaandbhavingnocommondivisor,itissucienttoknowaparticularH(a,b)
inordertoknowallothersetsH(a,b).Showthatinthiscase,thesetHcontainsallthenumbers
greaterthanorequalto
w=(a−1)(b−1)
2
othernumbers(exceptionoccursifw=0).
12. (France2)Letnbeaninteger,whichhasonly1asdivisor,thatisasquare.Inthenumber
systemwithbasen,weconsiderthelastdigitx
1
ofanintegersmallerthannandweconsider
alsothelastdigits(denotedbyx
m
)oftheintegerpowersx
m
ofthatnumber.Forwhichnumbers
xdowehavex
m
=0?Showthatthesequencex
m
hasaperiodt.Forwhichnumbersxdowe
havex
t
=1?Showthatifm,nandthavenocommondivisorexcept1,thenumbers
0
m
,1
m
,2
m
,...,(n−1)
m
arealldierentonefromanother.Determinetheminimalconditionvalueoftasafunctionofn.
Ifndoesnotsatisfytheaboveconditions,showthatitispossibletohavex
m
=06=x
1
andthat
thesequenceisperiodicbutonlystartingfromacertainvaluek,independentfromx.
13. (France3)Givenapolygon,notnecessarilyconvex,withareaS,ofwhichtheverticeshave
integercoordinates,notnecessarilypositive.IfIisthenumberofpointsintheinteriorofthe
polygonandBthenumberofpointsontheborder,determinetheinteger
T=2S−B−2I+2
cbyOrlandoD¨ohring,memberoftheIMOShortList/LongListProjectGroup,page2/12
andalso
w
.
14. (France4)WehavearighttriangleOAB(
ˆ
B=90
)andacirclewithcenterlocatedon[OB],
tangentonOA.FromAtwotangentscanbedrawnatthegivencircle.LetTbethecontact
withthecircle,dierentfromthatwithOA.Showthatthemedian,lineofgravity,fromBinthe
triangleOABintersectATinapointMsuchthat
|MB|=|MT|.
,andanotherrelationamong(n),(n−3)and(n).
Finallyrepresent(n)asaresultofthevaluesoftherestofthedivisionofnby6.Whatcanbe
saidabout(n)andthenumber1+
n(n+6)
12
?Determine
thenumberoftriplets(x,y,z)inafunctiondivisibleby6.Whatcanbesaidaboutthisnumber
regarding
(n+6)(2n
2
+9n+12)
72
12
,and(n)andthenumber
(n+3)
2
?
GlobalRemark:AllthesequestionsaremadebyMr.Warusfel,whowasafanaticsupporterof
thenewmath.SecondlyhefollowstheFrenchtraditionofthequestionsfortheexam”Compo-
sitiondesMathem´ematiques”andthismeansthateveryquestionisacomplexinvestigationofa
problemandnotaproblemonitsown.
16. (GreatBritain1)Considerthepolynomial
P(x)=a
0
x
k
+a
1
x
k−1
+...+a
k
witha
0
,a
1
,...,a
k
beingintegers.SuchapolynomialissaidtobedivisiblebymifP(x)isa
multipleforeveryintegerx.Showthata
0
k!isamultipleofmifP(k)isdivisiblebym.Prove
alsothefollowingproperty:Ifa
0
,kandmarepositiveintegerswitha
0
k!amultipleofm,thenit
ispossibletofindapolynomialdivisiblebymofwhicha
0
x
k
hasthehighestdegree.
(DarijGrinberg’stranslationfromMorozova/Petrakov:)Apolynomial
P(x)=a
0
x
k
+a
1
x
k−1
+...+a
k
,
wherea
0
,a
1
,...,a
k
areintegers,issaidtobedivisiblebym,ifmdividesthenumberP(x)for
everyintegerx.ShowthatifthepolynomialP(x)isdivisiblebym,thenthenumberk!a
0
is
divisiblebym.Alsoshowthatifthenumbersa
0
,kandmarepositiveintegerssuchthatk!a
0
is
divisiblebym,thenyoucanalwaysfindapolynomial
P(x)=a
0
x
k
+a
1
x
k−1
+...+a
k
divisiblebym.
17. (GreatBritain2)Givenarethenegativeintegersa,b,x,ywiththeassumptionthata,bhave
nocommonfactor.Provethatab−a−brepresentsthegreatestnumberwhichcannotbewritten
intheformax+by.
cbyOrlandoD¨ohring,memberoftheIMOShortList/LongListProjectGroup,page3/12
simplerelationbetween(n)and
n+2
2
15. (France5)Let(n)bethenumberofintegerpairs(x,y)suchthatx+y=n,0yx.Let
(n)bethenumberintegertriplets(x,y,z)suchthatx+y+z=n,0zyx.Finda
18. (GreatBritain3)Considerasolidcomposedofarightcircularcylinder,withheighthand
radiusr,andthehemisphereplaceonthetopofit,radiusrandcenterO.Thatsolidisplacedon
ahorizontaltable.Awireisattachedononesideatapointofthebaseofthecylinder,stretched
verticallyandattachedatthetopatpointPofthehemisphere.LetbetheanglewhichOP
makeswiththehorizontaltable.Showthat,ifissucientlysmallandthewireisalittlebit
displaced,notanymoreintheverticalplane,thewireiscomingloose.
Remark:Seemstoberatherascienceolympiadproblemthanamathematicalolympiadproblem.
19. (GreatBritain4)LetABbeperpendiculartoCDinapointXinsuchawaythat|CX|=|XD|.
ShowthatwithsomerestrictionsthereexistsatruncatedconeonwhichA,B,C,Dareranged.
Whatarethoserestrictions?
20. (GreatBritain5)Wehaveu
0
=1,u
1
=1andu
n+2
=au
n+1
+bu
n
,n0,withaandbbeing
naturalnumbers.Writeu
n
asapolynomialinaandbandproveyourresult.Ifbisaprime,show
thatbdividesa(u
9
−1).
21. (GreatBritain6)GivenapointOandthreelengthsx,y,z.Showthatanequilateraltriangle
ABCwithverticessatisfyingOA=x,OB=y,OC=zexistsifandonlyiftheinequalities
y+zx,z+xy,x+yzarefulfilled.(Hereby,thepointsO,A,B,Caresupposedtolie
ononeplane.)
RemarkByOrlando:ThisproblemwasaddedtotheIMOLongListfromoneoftheMoro-
zova/Petrakovvolumes.Thelogicalorderhowtheproblemsarelistedinthebookmakesme
assumethattheproblemwasproposedfortheIMO1969.
GlobalRemark:ThequestionproposedbyGreatBritainare-inthewhole-ratherpeculiar.The
questionsaretotallyinfluencedbythetraditionsoftheA−levelexamsinEngland.Itmust
honestlybesaidthattheproposalsofalotofwesterncountrieswereanalogoustothecurriculum
situationintheircountry.
22. (Hungary1)
126.InanisoscelestriangleABC,wehaveAB=ACand
]
BAC=20
.LetDbethepointon
theedgeABsuchthatAD=CD,andletEbethepointontheedgeACsuchthatBC=CE.
Find
]
CDE.
RemarkByOrlando:ThisproblemwasaddedtotheIMOLongListfromoneoftheMoro-
zova/Petrakovvolumes.Thelogicalorderhowtheproblemsarelistedinthebookmakesme
assumethattheproblemwasproposedfortheIMO1969.
23. (Hungary2)Provetheinequalityforanyn2
N
n
X
k
3
<
5
4
.
k=1
RemarkByOrlando:ThisproblemwasaddedtotheIMOLongListfromoneoftheMoro-
zova/Petrakovvolumes.Thelogicalorderhowtheproblemsarelistedinthebookmakesme
assumethattheproblemwasproposedfortheIMO1969.
cbyOrlandoD¨ohring,memberoftheIMOShortList/LongListProjectGroup,page4/12
1
24. (Hungary3)Given4000pointsintheplanesuchthatnothreeofthesepointsarecollinear.
Showtheexistenceof1000pairwisedisjunctquadrilateralswhoseverticesarethegivenpoints.
(Twoquadrilateralsarecalleddisjunctifthereisnopointlyingintheinteriorofbothquadrilat-
erals.)
RemarkByOrlando:ThisproblemwasaddedtotheIMOLongListfromoneoftheMoro-
zova/Petrakovvolumes.Thelogicalorderhowtheproblemsarelistedinthebookmakesme
assumethattheproblemwasproposedfortheIMO1969.
25. (Mongolia1)Findthecircumradiusoftheisoscelestrianglewhosesidelengthsaretherootsof
aquadraticequationx
2
−ax+b=0.
RemarkByOrlando:ThisproblemwasaddedtotheIMOLongListfromoneoftheMoro-
zova/Petrakovvolumes.Thelogicalorderhowtheproblemsarelistedinthebookmakesme
assumethattheproblemwasproposedfortheIMO1969.
26. (Netherlands1)Theverticesofapolygonwith(n+1)sidesarechosenontheperimeterof
agivenregularpolygonwithnsidesinsuchawaythattheydividetheperimeterintwoequal
parts.Howcanthisbedonesothattheareaofthepolygonwith(n+1)sidesis(i)maximaland
(ii)minimal.
(DarijGrinberg’stranslationfromMorozova/Petrakov:)Consideran(n+1)-gonwith
verticeslyingonthesidesofafixedregularn-gonanddividingtheperimeterofthisn-goninto
n+1equalparts.[Ofcourse,twocertainverticesofthe(n+1)-gonwillhavetolieononeside
ofthen-gon.]Howshouldtheverticesofthe(n+1)-gonbeplacedonthesidesofthen-gonin
ordertohavetheareaofthe(n+1)-gon
a)maximal?
b)minimal?
27. (Netherlands2)AsemicirculararcisdrawnonABasdiameter.Cisapointonotherthan
AandB,andDisthefootoftheperpendicularfromCtoAB.Weconsiderthethreecircles
1
,
2
,
3
,alltangenttothelineAB.Ofthese,
1
isinscribedintriangleABC,while
2
and
3
arebothtangenttoCDandto,oneoneachsideofCD.Provethat
1
,
2
,
3
haveasecond
tangentincommon.
Remark:ThisquestionwaschosenasthefourthIMOquestion.
cbyOrlandoD¨ohring,memberoftheIMOShortList/LongListProjectGroup,page5/12
Plik z chomika:
gorek2
Inne pliki z tego folderu:
IMO_2003_shortlist_solutionbook.pdf
(369 KB)
IMO_2003_shortlist.pdf
(1172 KB)
IMO_2002_shortlist.pdf
(1161 KB)
IMO_2001_shortlist.pdf
(271 KB)
IMO_1998_shortlist_additional_materials.pdf
(231 KB)
Inne foldery tego chomika:
- Tytus, Romek i ATomek
Pliki dostępne do 01.06.2025
Pliki dostępne do 08.07.2024
Pliki dostępne do 19.01.2025
[Audio]
Zgłoś jeśli
naruszono regulamin