Active Learning with Statistical Models.pdf
(
228 KB
)
Pobierz
statmodels.dvi
tures, however, provide an estimate of P(y
j
x) based on
expectation
of
An
active
learning problem is one where the learner has
ping X
!
Y based on a set of training examples
f
(x
)
g
2
X and y
i
2
Y . The learner
(), a training set
f
(x
i
)
g
y(x
i
1
S
distribution P(y
j
x)by its estimated mean y(x) and vari-
1
(x; x)
S
j
w
jj
w
j
matrix for each new example, and incorporat-
Unless explicitly denoted,
y
and
2
y
are functions of
x
.
(x
2
y
j
x;i
(x)
(x
(x)
h
i
=
j
i)
(x)(x
j
k)
=
h
2
y
j
x;i
(x
2
y
j
x;i
(x
P (x
j
i)
h
P (x
j
j)
(x)
h(x
x
)=exp(
k(x
x
2
y
j
x;i
(x
x)
2
x)(y
2
y
j
x
P(y
j
x)=
P(y
j
x;i)=
(x);
2
y
j
x;i
(x
h
2
y
j
x
(x
point sampled from P(y
j
x; i)andweight this change by
2
y
j
x;i
(x
P(y
j
x)=N(y(x);
2
y
j
x
(x))
1
Neural Network
0.5
2
y
j
x
0
(x
predicted change
actual change
−0.5
0
0.2
0.4
0.6
0.8
1
~
h(x
~
h(y(x)
x
2
[0; 1]. Changes are not plotted to scale with ts.
~
h(x
)(y(x)
1
Mixture of Gaussians
h
i
=
(x)(x
=
h
0.5
2
y
j
x
0
predicted change
actual change
−0.5
0
0.2
0.4
0.6
0.8
1
Regression by local tting.
Journal of Econometrics
Sampling. In D. Touretzky, ed.,
Advances in Neural In-
formation Processing Systems 2
, Morgan Kaufmann.
Advances in Neural Information Processing Systems 6
.
1
Kernel Regression
(x ,x )
1 2
2
0.5
1
0
predicted change
actual change
−0.5
−1
0
0.2
0.4
0.6
0.8
1
0.025
0.02
1
LOESS
0.015
0.8
0.01
0.6
0.005
0.4
0
0.2
−0.005
0
predicted change
actual change
−0.01 −0.005
0
0.005 0.01 0.015 0.02 0.025
−0.2
predicted delta variance
−0.4
−0.6
0
0.2
0.4
0.6
0.8
1
rithm.
J. Royal Statistical Society Series B
,
39
:1{38.
V. Fedorov
. (1972)
Theory of Optimal Experiments
.
cise training sets from clean data.
IEEE Transactions
on Neural Networks
, 4, 305{318.
An Implementation of Memory-based Learning.
Control
Systems Magazine
, 14(1):57{71.
J. Cowan et al., eds.,
Advances in Neural Information
Processing Systems 6
. Morgan Kaufmann.
J. Schmidhuber and J. Storck
. (1993) Reinforce-
al., eds.,
Proc. 2nd Int. Conf. on Simulation of Adaptive
Behavior
, MIT Press, Cambridge.
D. Specht
. (1991) A general regression neural network.
IEEE Trans. Neural Networks
, 2(6):568{576.
tions for active data selection,
Neural Computation
4(4):
Advances in Neural Information Processing Systems 4
.
Query Construction for Neural Network Models.
In this
−0.01
Plik z chomika:
THERON
Inne pliki z tego folderu:
[statistics] Wiley, Practical Methods for Design and Analysis of Complex Surveys (2004), 2E.pdf
(3957 KB)
Modelowanie i symulacja - Zenon Biniek.pdf
(2288 KB)
modelowanie i symulacja - wykład.doc
(1710 KB)
Multilevel statistical models.pdf
(834 KB)
Data Analysis - Statistics - An Introduction to Statistical Inference and Data Analysis.pdf
(921 KB)
Inne foldery tego chomika:
$ FILMY
@ Słowniki i encyklopedie
@MULTIMEDIA
CHEMIA
DATA MINING
Zgłoś jeśli
naruszono regulamin