integral_transforms.pdf
(
94 KB
)
Pobierz
390095853 UNPDF
transform
—libraryforintegraltransforms
Tableofcontents
Preface..................................... ii
HelpPages
transform::fourier,transform::invfourier
—Fourierandinverse
Fouriertransform.............................. 1
transform::laplace,transform::invlaplace
—Laplaceandinverse
Laplacetransform.............................. 3
Introduction
The
transform
libraryprovidessomeintegraltransformations.
Thepackagefunctionsarecalledusingthepackagename
transform
and
thenameofthefunction.E.g.,use
>>transform::fourier(exp(-t^2),t,s)
tocomputetheFouriertransformofe
−t
2
withrespectto
t
atthepoint
s
.
Thismechanismavoidsnamingconflictswithotherlibraryfunctions.Ifthisis
foundtobeinconvenient,thentheroutinesofthe
transform
packagemaybe
exportedvia
export
.E.g.,aftercalling
>>export(transform,fourier)
thefunction
transform::fourier
maybecalleddirectly:
>>fourier(exp(-t^2),t,s)
Allroutinesofthe
transform
packageareexportedsimultaneouslyby
>>export(transform)
Thefunctionsavailableinthe
transform
librarycanbelistedwith:
>>info(transform)
ii
transform::fourier,transform::invfourier–
Fourierandinverse
Fouriertransform
−1
fe
ist
dt
oftheexpressionf=f(t)withrespecttothevariabletatthepoints.
transform::invfourier(F,S,T)
computestheinverseFouriertransform
1
2
oftheexpressionF=F(S)withrespecttothevariableSatthepointT.
R
1
−1
Fe
−iST
dS
Call(s):
transform::fourier(f,t,s)
transform::invfourier(F,S,T)
Parameters:
f,F
—arithmeticalexpressions
t,S
—identifiers(thetransformationvariables)
s,T
—arithmeticalexpressions(theevaluationpoints)
ReturnValue:anarithmeticalexpression
Overloadableby:
f,F
RelatedFunctions:
numeric::fft
,
numeric::invfft
Details:
A
Anunevaluatedfunctioncallisreturned,ifnoexplicitrepresentationof
thetransformisfound.
transform::invfourier(F,S,T)
iscomputedas
transform
::
fourier
(
F
,
S
,
−T
)/
2
/
PI
.
Thisresultisreturned,ifnoexplicitrepresentationofthetransformation
isfound.
ThediscreteFouriertransformisimplementedbythefunctions
numeric::fft
and
numeric::invfft
.
Example1.ThefollowingcallproducestheFouriertransformasanexpres-
sioninthevariable
s
:
>>transform::fourier(exp(-t^2),t,s)
1
transform::fourier(f,t,s)
computestheFouriertransform
R
1
A
A
A
A
/ 2\
1/2 | s|
PI exp|---|
\ 4/
>>transform::invfourier(%,s,t)
2
exp(-t)
NotethattheFouriertransformcanbeevaluateddirectlyataspecificpoint
suchass=2aors=5:
>>transform::fourier(t*exp(-a*t^2),t,s),
transform::fourier(t*exp(-a*t^2),t,2*a),
transform::fourier(t*exp(-a*t^2),t,2)
/ 2\
1/2 | s| 1/2 / 1\
1/2IsPI exp|----| 1/2 IPI exp|--|
\ 4a/IPI exp(-a) \ a/
--------------------------,---------------,------------------
3/2 1/2 3/2
a a a
Example2.Anunevaluatedcallisreturned,ifnoexplicitrepresentationof
thetransformisfound:
>>transform::fourier(besselJ(0,1/(1+t^2)),t,s)
/ / 1 \ \
transform::fourier|besselJ|0,------|,t,s|
| | 2 | |
\ \ t+1/ /
>>transform::invfourier(%,s,t)
/ 1 \
besselJ|0,------|
| 2 |
\ t+1/
Notethattheinversetransformisrelatedtothedirecttransform:
>>transform::invfourier(unknown(s),s,t)
transform::fourier(unknown(s),s,-t)
-------------------------------------
2PI
2
Example3.Thedistribution
dirac
ishandled:
>>transform::fourier(t^3,t,s)
2IPIdirac(s,3)
>>transform::invfourier(%,s,t)
3
t
>>transform::fourier(heaviside(t-t0),t,s)
/ I\
exp(Ist0)|PIdirac(s)+-|
\ s/
Example4.TheFouriertransformofafunctionisrelatedtotheFourier
transformofitsderivative:
A
>>transform::fourier(diff(f(t),t),t,s)
-Istransform::fourier(f(t),t,s)
Background:
Reference:F.Oberhettinger,“TablesofFourierTransformsandFourier
TransformsofDistributions”,Springer,1990.
transform::laplace,transform::invlaplace–
Laplaceandinverse
Laplacetransform
0
fe
−st
dt
oftheexpressionf=f(t)withrespecttothevariabletatthepoints.
A
transform::invlaplace(F,S,T)
computestheinverseLaplacetransformof
theexpressionF=F(S)withrespecttothevariableSatthepointT.
Call(s):
transform::laplace(f,t,s)
transform::invlaplace(F,S,T)
3
transform::laplace(f,t,s)
computestheLaplacetransform
R
1
A
Plik z chomika:
gorek2
Inne pliki z tego folderu:
Keisler J.H. - Elementary Calculus - An Approach Using Infinitesimals - Second revision (09-2007).pdf
(24161 KB)
(ebook-pdf) - Mathematics - Advanced determinant calculus.pdf
(785 KB)
(ebook-pdf) - Mathematics - Foundations Of Calculus.pdf
(1596 KB)
Agricola and Friedrich - Global Analysis (2002).pdf
(6970 KB)
Aliprantis and Burkinshaw - Principles of Real Analysis (1998).pdf
(31084 KB)
Inne foldery tego chomika:
Complex Analysis
Mathematics
MCetp_Problems
MDdg_Differential geometry
Zgłoś jeśli
naruszono regulamin